返回

高中数学

首页
  • 解答题
    己知f(x)在(-1,1)上有定义,f(
    1
    2
    )=-1,且满足x.,y∈(-1,1)有f(x)+f(y)=f(
    x+y
    1-xy
    )

    (I)判断为f(x)在(-1,1)上的奇偶性:
    (II)对数列x1=
    1
    2
    ,xn+1=
    2xn
    1+xn2
    ,求f(xn
    (111)求证:
    1
    f(x1)
    +
    1
    fx2)
    +…+
    1
    f(xn)
    >-
    2n+5
    n+2

    本题信息:数学解答题难度一般 来源:未知
  • 本题答案
    查看答案
本试题 “己知f(x)在(-1,1)上有定义,f(12)=-1,且满足x.,y∈(-1,1)有f(x)+f(y)=f(x+y1-xy).(I)判断为f(x)在(-1,1)上的奇偶性:(II)对数列x1...” 主要考查您对

函数的奇偶性、周期性

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 函数的奇偶性、周期性

函数的奇偶性定义:

偶函数:一般地,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),则称函数f(x)为偶函数。
奇函数:一般地,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)是奇函数。 
 
函数的周期性

(1)定义:若T为非零常数,对于定义域内的任一x,使f(x+T)=f(x)恒成立,则f(x)叫做周期函数,T叫做这个函数的一个周期。
周期函数定义域必是无界的。
(2)若T是周期,则k·T(k≠0,k∈Z)也是周期,所有周期中最小的正数叫最小正周期。一般所说的周期是指函数的最小正周期。
周期函数并非都有最小正周期,如常函数f(x)=C。


奇函数与偶函数性质:

(1)奇函数与偶函数的图像的对称性:奇函数的图像关于原点对称,偶函数的图像关于y轴对称。
(3)在公共定义域内,①两个奇函数的和是奇函数,两个奇函数的积是偶函数; ②两个偶函数的和、积是偶函数; ③一个奇函数,一个偶函数的积是奇函数。

注:定义域在数轴上关于原点对称是函数f(x)为奇函数或偶函数的必要但不充分条件.


1、函数是奇函数或偶函数的前提定义域必须关于原点对称;定义域在数轴上关于原点对称是函数f(x)为奇函数或偶函数的必要但不充分条件.

2、函数的周期性    令a , b 均不为零,若: 
(1)函数y = f(x) 存在 f(x)=f(x + a) ==> 函数最小正周期 T=|a| 
(2)函数y = f(x) 存在f(a + x) = f(b + x) ==> 函数最小正周期 T=|b-a| 
(3)函数y = f(x) 存在 f(x) = -f(x + a) ==> 函数最小正周期 T=|2a| 
(4)函数y = f(x) 存在 f(x + a) =  ==> 函数最小正周期 T=|2a| 
(5)函数y = f(x) 存在 f(x + a) =   ==> 函数最小正周期 T=|4a|