返回

初中数学

首页
  • 单选题
    下列各式计算正确的是(  )
    A.m8÷m4=m2B.a2•a3=a6C.
    1
    x
    +
    1
    y
    =
    2
    x+y
    D.
    6
    ÷
    2
    =
    3

    本题信息:2012年燕山区二模数学单选题难度一般 来源:未知
  • 本题答案
    查看答案
本试题 “下列各式计算正确的是( )A.m8÷m4=m2B.a2•a3=a6C.1x+1y=2x+yD.6÷2=3” 主要考查您对

有理数除法

有理数的乘方

分式的加减

二次根式的乘除

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 有理数除法
  • 有理数的乘方
  • 分式的加减
  • 二次根式的乘除
有理数除法定义:
已知两个因数的积与其中一个因数,求另一个因数的运算叫做有理数的除法。

有理数的除法法则:
(1)除以一个数,等于乘上这个数的倒数;
(2)两个数相除,同号得正,异号得负,并把绝对值相除;
(3)0除以任何一个不等于0的数都等于0。


有理数除法注意:
①0不能做除数;
②有理数的除法和乘法是互逆运算;
③在做除法运算时,根据同号得正,异号的负的法则先确定符号,在把绝对值相除,若在算式中有带分数,一般化成假分数进行计算,若不能整除,则除法运算都转化为乘法运算。
有理数乘方的定义:
求n个相同因数的积的运算叫做乘方,乘方的结果叫做幂。在an中,a叫做底数,n叫做指数。
22、73也可以看做是乘方运算的结果,这时它们表示数,分别读作“2的2次幂”、“7的3次幂”,其中2、7叫做底数,6、3叫做指数。
①习惯上把22叫做2的平方,把23叫做2的立方;
②当底数是负数或分数时,要先用括号将底数括上,再在其右上角写指数,指数要写得小些。
乘方的性质:
乘方是乘法的特例,其性质如下:
(1)正数的任何次幂都是正数;
(2)负数的偶次幂是正数,负数的奇次幂是负数;
(3)0的任何(除0以外)次幂都是0;
(4)a2是一个非负数,即a2≥0。
有理数乘方法则:
①负数的奇次幂是负数,负数的偶次幂是正数。例如:(-2)3=-8,(-2)2=4
②正数的任何次幂都是正数,0的任何正整数次幂都是0.例如:22=4,23=8,03=0

点拨:
①0的次幂没意义;
②任何有理数的偶次幂都是非负数;
③由于乘方是乘法的特例,因此有理数的乘方运算可以用有理数的乘法运算完成;
④负数的乘方与乘方的相反数不同。
乘方示意图:

分式的加减法则:
同分母的分式相加减,分母不变,把分子相加减;
异分母的分式相加减,先通分,变为同分母分式,然后再加减。
用式子表示为:

分式的加减要求:
①分式的加减运算结果必须是最简分式或整式,运算中要适时地约分;
②如果一个分式与一个整式相加减,那么可以把整式看成是分母为1的分式,先通分,再进行加减。
二次根式的乘除法则:
1、二次根式的乘法原则:,即两个二次根式相乘,根指数不变,相乘的结果是一个二次根式或有理式。
2、二次根式的除法原则:,即二次根式相除,就是把被被开方数相除,根指数不变。
有理化根式:如果两个含有根式的代数式的积不再含有根式,那么这两个代数式叫做有理化根式,也称有理化因式。