返回

初中二年级数学

首页
  • 单选题
    下列各式中,计算正确的是(   )

    A.2-3=6
    B.a3b(a-1b)-2=
    C.(--1=2
    D.(π-3.14)0=1

    本题信息:2010年四川省会考题数学单选题难度一般 来源:刘佩
  • 本题答案
    查看答案
本试题 “下列各式中,计算正确的是( )A.2-3=6B.a3b(a-1b)-2=C.(-)-1=2D.(π-3.14)0=1” 主要考查您对

有理数的乘方

零指数幂(负指数幂和指数为1)

整式的乘法

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 有理数的乘方
  • 零指数幂(负指数幂和指数为1)
  • 整式的乘法
有理数乘方的定义:
求n个相同因数的积的运算叫做乘方,乘方的结果叫做幂。在an中,a叫做底数,n叫做指数。
22、73也可以看做是乘方运算的结果,这时它们表示数,分别读作“2的2次幂”、“7的3次幂”,其中2、7叫做底数,6、3叫做指数。
①习惯上把22叫做2的平方,把23叫做2的立方;
②当底数是负数或分数时,要先用括号将底数括上,再在其右上角写指数,指数要写得小些。
乘方的性质:
乘方是乘法的特例,其性质如下:
(1)正数的任何次幂都是正数;
(2)负数的偶次幂是正数,负数的奇次幂是负数;
(3)0的任何(除0以外)次幂都是0;
(4)a2是一个非负数,即a2≥0。
有理数乘方法则:
①负数的奇次幂是负数,负数的偶次幂是正数。例如:(-2)3=-8,(-2)2=4
②正数的任何次幂都是正数,0的任何正整数次幂都是0.例如:22=4,23=8,03=0

点拨:
①0的次幂没意义;
②任何有理数的偶次幂都是非负数;
③由于乘方是乘法的特例,因此有理数的乘方运算可以用有理数的乘法运算完成;
④负数的乘方与乘方的相反数不同。
乘方示意图:

零指数幂定义:任何不等于零的数的零次幂都等于1。
负指数幂的定义:任何不等于零的数的-n(n为正整数)次幂,等于这个数的n次幂的倒数。
指数为1:任何不等于零的数的1次幂,所得结果都等于这个数的本身。
单项式和多项式都统称为整式。整式是有理式的一部分,在有理式中可以包含加,减,乘,除、乘方五种运算,但在整式中除数不能含有字母。把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个多项式因式分解(也叫作分解因式)。分解因式与整式乘法互逆。 1、单项式与单项式相乘的法则 单项式和单项式相乘,只要将它们的系数,相同字母的幂分别相乘,对于只在一个单项式中出项的字母,则连同它的指数一起作为积的一个因式.注意:单项式与单项式相乘的法则也适用于多个单项式相乘. 2.单项式与多项式相乘的法则 单项式与多项式相乘,只要将单项式分别乘以多项式的各项,再将所得的积相加.即m(a+b+c)=ma+mb+mc 3.多项式与多项式相乘的法则 多项式与多项式相乘,先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加.即(m+n)*(a+b)=ma+mb+na+nb