返回

初中数学

首页
  • 解答题
    求下列代数式的值
    (1)若a=-2,b=-3,则代数式(a+b)2-(a-b)2=2424
    (2)当x-y=3时,代数式2(x-y)2+3x-3y+1=2828
    (3)化简并求值:已知三个有理数a,b,c的积是负数,其和为正数;当x=
    |a|
    a
    +
    |b|
    b
    +
    |c|
    c
    时,求代数式(2x2-5x)-2(3x-5+x2)的值.
    本题信息:数学解答题难度较难 来源:未知
  • 本题答案
    查看答案
本试题 “求下列代数式的值(1)若a=-2,b=-3,则代数式(a+b)2-(a-b)2=2424(2)当x-y=3时,代数式2(x-y)2+3x-3y+1=2828(3)化简并求值:已知三个有理数a,b,c...” 主要考查您对

绝对值

代数式的求值

同类项

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 绝对值
  • 代数式的求值
  • 同类项
绝对值定义:
在数轴上,表示一个数的点到原点的距离叫做这个数的绝对值。
绝对值用“||”来表示。
在数轴上,表示一个数a的点到数b的点之间的距离的值,叫做a-b的绝对值,记作|a-b|。
绝对值的意义:
1、几何的意义:
在数轴上,一个数到原点的距离叫做该数的绝对值.如:5指在数轴上表示数5的点与原点的距离,这个距离是5,所以5的绝对值是5。

2、代数的意义:
非负数(正数和0,)
非负数的绝对值是它本身,非正数的绝对值是它的相反数。
互为相反数的两个数的绝对值相等。
a的绝对值用“|a |”表示.读作“a的绝对值”。
实数a的绝对值永远是非负数,即|a |≥0。
互为相反数的两个数的绝对值相等,即|-a|=|a|。
若a为正数,则满足|x|=a的x有两个值±a,如|x|=3,,则x=±3.

绝对值的有关性质:
①任何有理数的绝对值都是大于或等于0的数,这是绝对值的非负性;
②绝对值等于0的数只有一个,就是0;
③绝对值等于同一个正数的数有两个,这两个数互为相反数;
④互为相反数的两个数的绝对值相等。

绝对值的化简:
绝对值意思是值一定为正值,按照“符号相同为正,符号相异为负”的原则来去绝对值符号。
①绝对值符号里面为负,在去掉绝对值时必须要加一个负的符号老确保整个值为正值,也就是当:
│a│=a (a为正值,即a≥0 时);│a│=-a (a为负值,即a≤0 时)
②整数就找到这两个数的相同因数;
③小数就把这两个数同时扩大相同倍数成为整数,一般都是扩大10、100倍;
④分数的话就相除,得数是分数就是分子:分母,要是得数是整数,就这个数比1。


代数式的值:
用数值代替代数式的字母,按照代数式指明的运算,计算出结果才,叫做代数式的值。
代数式求值的步骤:
(1)代入;
(2)计算。
常用的代入方法有直接代入法与整体代入法。
注:代数式的值的取值条件:
(1)不能使代数式失去意义;
(2)不能使所表示的实际问题失去意义。
求代数式的值的方法:
①给出代数式中所有字母的值,该类题一般是先化简代数式,再代入字母的值,然后计算。
②给出代数式中所含几个字母之间的关系,不直接给出字母的值,该类题一般是把所要求的代数式通过恒等变形,转化成为用已知关系表示的形式。
③在给定条件中,字母之间的关系不明显,字母的值隐含在题设条件中,该类题应先由题设条件求出字母的值,再求代数式的值。
同类项:
所含字母相同,并且相同字母的指数也分别相同的项叫做同类项。
像4y与5y,100ab与14ab这样,所含字母相同,并且相同字母的次项的指数也相同的项叫做同类项,所有常数项都是同类项。(常数项也叫数字因数)

同类项性质:
(1)两个单项式是同类项的条件有两个:一是含有相同的字母;而是相同字母的指数分别相等;
(2)同类项与系数无关,与字母的排列顺序无关,只与字母及字母的指数有关;
(3)所有的常数项都是同类项。
例如:
1. 多项式3a-24ab-5a-7—a+152ab+29+a中3a与-5a是同类项
-24ab与152ab是同类项 【同类项与字母前的系数大小无关】
2. -7和29也是同类项【所有常数项都是同类项。】
3. -a和a也是同类项【-a的系数是-1 a的系数是1 】
4. 2ab和2ba也是同类项【同类项与系数和字母的顺序无关】
5.(3+k)与(3—k)是同类项。


合并同类项:
多项式中的同类项可以合并,叫做合并同类项。
合并同类项步骤:
(1)准确的找出同类项。
(2)逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变。
(3)写出合并后的结果。
在掌握合并同类项时注意:
1.如果两个同类项的系数互为相反数,合并同类项后,结果为0.
2.不要漏掉不能合并的项。
3.只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。
合并同类项的关键:正确判断同类项。

合并同类项的法则是:同类项的系数相加,所得的结果作为系数,字母和字母的指数不变。

合并同类项的理论依据:
其实,合并同类项法则是有其理论依据的。它所依据的就是乘法分配律,a(b+c)=ab+ac。合并同类项实际上就是乘法分配律的逆向运用。即将同类项中的每一项都看成两个因数的积,由于各项中都含有相同的字母并且它们的指数也分别相同,故同类项中的每项都含有相同的因数。合并时将分配律逆向运用,用相同的那个因数去乘以各项中另一个因数的代数和。

例1.合并同类项
-8ab+6ab-3ab
分析:同类项合并时,把同类项的系数加减,字母和各字母的指数都不改变。
解答:原式=(-8+6-3)ab=-5 ab。
例2.合并同类项
-xy+3-2xy+5xy-4xy-7
分析:在一个多项式中,往往含有几个不同的单项式,可运用加法交换律及合并同类项法则进行合并。注意不要把某些项漏合或漏写。
解答:原式=(-xy+5xy)+(-2xy-4xy)+(3-7)=-2xy-4
例3.合并同类项并解答:
2y-5y+y+4y-3y-2,其中y=1/2
=(2+1-3)y+(-5+4)y-2
=0+(-y)-2
当y=1/2时,原式=(-1/2)-2
=-5/2
在合并同类项时,要注意是常数项也是同类项。