返回

高中三年级数学

首页
  • 解答题
    经市场调查,某旅游城市在过去的一个月内(以30天计),日旅游人数f(t)(万人)与时间t(天)的函数关系近似满足,人均消费g(t)(元)与时间t(天)的函数关系近似满足g(t)=115﹣|t﹣15|.
    (Ⅰ)求该城市的旅游日收益w(t)(万元)与时间t(1≤t≤30,t∈N)的函数关系式;
    (Ⅱ)求该城市旅游日收益的最小值(万元).
    本题信息:2012年江苏同步题数学解答题难度较难 来源:沈诺(高中数学)
  • 本题答案
    查看答案
本试题 “经市场调查,某旅游城市在过去的一个月内(以30天计),日旅游人数f(t)(万人)与时间t(天)的函数关系近似满足,人均消费g(t)(元)与时间t(天)的函...” 主要考查您对

分段函数与抽象函数

基本不等式及其应用

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 分段函数与抽象函数
  • 基本不等式及其应用

分段函数:

1、分段函数:定义域中各段的x与y的对应法则不同,函数式是分两段或几段给出的;
分段函数是一个函数,定义域、值域都是各段的并集。 

抽象函数

我们把没有给出具体解析式的函数称为抽象函数;
一般形式为y=f(x),或许还附有定义域、值域等,如:y=f(x),(x>0,y>0)。


知识点拨:

1、绝对值函数去掉绝对符号后就是分段函数。
2、分段函数中的问题一般是求解析式、反函数、值域或最值,讨论奇偶性单调性等。
3、分段函数的处理方法:分段函数分段研究。


基本不等式:

(当且仅当a=b时取“=”号);
变式:①(当且仅当a=b时取“=”号),即两个正数的算术平均不小于它们的几何平均。
;③;④


对基本不等式的理解:

(1)基本不等式的证明是利用重要不等式推导的,即,即有
(2)基本不等式又称为均值定理、均值不等式等,其中的算术平均数,的几何平均数,本定理也可叙述为:两个正数的算术平均数不小于它们的几何平均数.
(3)要特别注意不等式成立的条件和等号成立的条件.均值不等式中:①当a=b时取等号,即


对于两个正数x,y,若已知xy,x+y,中的某一个为定值,可求出其余各个的最值:
如:(1)当xy=P(定值),那么当x=y时,和x+y有最小值2
(2)x+y=S(定值),那么当x=y时,积xy有最大值
(3)已知x2+y2=p,则x+y有最大值为

应用基本的不等式解题时:

注意创设一个应用基本不等式的情境及使等号成立的条件,即“一正、二定、三相等”。

利用基本不等式比较实数大小:

(1)注意均值不等式的前提条件.
(2)通过加减项的方法配凑成使用均值定理的形式.
(3)注意“1”的代换.
(4)灵活变换基本不等式的形式,并注重其变形形式的运用.重要不等式的形式可以是,也可以是,还可以是等,不仅要掌握原来的形式,还要掌握它的几种变形形式以及公式的逆用等,以便应用.
(5)合理配组,反复应用均值不等式。 


基本不等式的几种变形公式: