返回

初中三年级数学

首页
  • 解答题
    在正方形ABCD 的边AB上任取一点E,作EF⊥AB 交 BD 于点 F,取FD 的中点G,连接EG、CG,如图①,易证 EG=CG,且EG⊥CG。
    (1)将△BEF绕点B逆时针旋转90°,如图②,则线段EG和 CG 有怎样的数量关系和位置关系?请直接写出你的猜想。
    (2)将△BEF绕点B逆时针旋转180°,如图③,则线段 EG 和 CG 又有怎样的数量关系和位置关系?请写出你的猜想,并加以证明。

    本题信息:2012年同步题数学解答题难度较难 来源:金填
  • 本题答案
    查看答案
本试题 “在正方形ABCD 的边AB上任取一点E,作EF⊥AB 交 BD 于点 F,取FD 的中点G,连接EG、CG,如图①,易证 EG=CG,且EG⊥CG。(1)将△BEF绕点B逆时针旋转90°,如图②,...” 主要考查您对

全等三角形的性质

矩形,矩形的性质,矩形的判定

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 全等三角形的性质
  • 矩形,矩形的性质,矩形的判定
全等三角形:
两个全等的三角形,而该两个三角形的三条边及三个角都对应地相等。全等三角形是几何中全等的一种。根据全等转换,两个全等三角形可以是平移、旋转、轴对称,或重叠等。当两个三角形的对应边及角都完全相对时,该两个三角形就是全等三角形。正常来说,验证两个全等三角形时都以三个相等部分来验证,最后便能得出结果。
全等三角形的对应边相等,对应角相等。
①全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;
②全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角;
③有公共边的,公共边一定是对应边;
④有公共角的,角一定是对应角;
⑤有对顶角的,对顶角一定是对应角。

全等三角形的性质:
1.全等三角形的对应角相等。
2.全等三角形的对应边相等。
3.全等三角形的对应边上的高对应相等。
4.全等三角形的对应角的角平分线相等。
5.全等三角形的对应边上的中线相等。
6.全等三角形面积相等。
7.全等三角形周长相等。
8.全等三角形的对应角的三角函数值相等。



矩形:
是一种平面图形,矩形的四个角都是直角,同时矩形的对角线相等,而且矩形所在平面内任一点到其两对角线端点的距离的平方和相等。

矩形的性质:
1.矩形的4个内角都是直角;
2.矩形的对角线相等且互相平分;
3.矩形所在平面内任一点到其两对角线端点的距离的平方和相等;
4.矩形既是轴对称图形,也是中心对称图形(对称轴是任何一组对边中点的连线),它至少有两条对称轴。对称中心是对角线的交点。
5.矩形是特殊的平行四边形,矩形具有平行四边形的所有性质
6.顺次连接矩形各边中点得到的四边形是菱形


矩形的判定
①定义:有一个角是直角的平行四边形是矩形
②定理1:有三个角是直角的四边形是矩形
③定理2:对角线相等的平行四边形是矩形
④对角线互相平分且相等的四边形是矩形
矩形的面积:S矩形=长×宽=ab。
黄金矩形:
宽与长的比是(√5-1)/2(约为0.618)的矩形叫做黄金矩形。
黄金矩形给我们一协调、匀称的美感。世界各国许多著名的建筑,为取得最佳的视觉效果,都采用了黄金矩形的设计。如希腊的巴特农神庙等。
发现相似题
与“在正方形ABCD 的边AB上任取一点E,作EF⊥AB 交 BD 于点 F,取F...”考查相似的试题有: