本试题 “在正方形ABCD 的边AB上任取一点E,作EF⊥AB 交 BD 于点 F,取FD 的中点G,连接EG、CG,如图①,易证 EG=CG,且EG⊥CG。(1)将△BEF绕点B逆时针旋转90°,如图②,...” 主要考查您对全等三角形的性质
矩形,矩形的性质,矩形的判定
等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
全等三角形的性质:
1.全等三角形的对应角相等。
2.全等三角形的对应边相等。
3.全等三角形的对应边上的高对应相等。
4.全等三角形的对应角的角平分线相等。
5.全等三角形的对应边上的中线相等。
6.全等三角形面积相等。
7.全等三角形周长相等。
8.全等三角形的对应角的三角函数值相等。
矩形的性质:
1.矩形的4个内角都是直角;
2.矩形的对角线相等且互相平分;
3.矩形所在平面内任一点到其两对角线端点的距离的平方和相等;
4.矩形既是轴对称图形,也是中心对称图形(对称轴是任何一组对边中点的连线),它至少有两条对称轴。对称中心是对角线的交点。
5.矩形是特殊的平行四边形,矩形具有平行四边形的所有性质
6.顺次连接矩形各边中点得到的四边形是菱形
与“在正方形ABCD 的边AB上任取一点E,作EF⊥AB 交 BD 于点 F,取F...”考查相似的试题有: