返回

高中数学

首页
  • 填空题
    在平面直角坐标系xOy中,圆C的方程为x2+y2-8x+15=0,若直线y=kx-2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值是______.
    本题信息:2012年江苏数学填空题难度较难 来源:未知
  • 本题答案
    查看答案
本试题 “在平面直角坐标系xOy中,圆C的方程为x2+y2-8x+15=0,若直线y=kx-2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值是______.” 主要考查您对

直线与圆的位置关系

圆与圆的位置关系

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 直线与圆的位置关系
  • 圆与圆的位置关系

直线与圆的位置关系

由直线与圆的公共点的个数,得出以下直线和圆的三种位置关系:
(1)相交:直线与圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线。
(2)相切:直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫做圆的切线,唯一的公共点叫做切点。
(3)相离:直线和圆没有公共点时,叫做直线和圆相离。
其图像如下:


直线和圆的位置关系的性质:

(1)直线l和⊙O相交d<r
(2)直线l和⊙O相切d=r;
(3)直线l和⊙O相离d>r。


直线与圆位置关系的判定方法:

(1)代数法:判断直线Ax+By+C=0和圆x2+y2+Dx+Ey+F=0的位置关系,可由
 
推出mx2+nx+p=0,利用判别式△进行判断.
△>0则直线与圆相交;
△=0则直线与圆相切;
△<0则直线与圆相离.
(2)几何法:已知直线Ax+By+C=0和圆,圆心到直线的距离
d<r则直线和圆相交;
d=r则直线和圆相切;
d>r则直线和圆相离.
特别提醒:
(1)上述两种方法,以利用圆心到直线的距离进行判定较为简捷,而判别式法也适用于直线与椭圆、双曲线、抛物线位置关系的判断.
(2)直线与圆相交,应抓住半径、弦心距、半弦长组成的直角三角形,可使解法简单.

直线与圆位置关系的判定方法列表如下:

直线与圆相交的弦长公式:

(1)几何法:如图所示,直线l与圆C相交于A、B两点,线段AB的长即为l与圆相交的弦长。
设弦心距为d,半径为r,弦为AB,则有|AB|=

(2)代数法:直线l与圆交于直线l的斜率为k,则有
当直线AB的倾斜角为直角,即斜率不存在时,|AB|=


圆与圆的位置关系:

圆与圆有五种位置关系:相交、外离、外切、内切和内含。


圆与圆的位置关系的判断方法:

(1)利用圆心距和两圆半径比较大小(几何法)已知两圆的圆心距为d,则位置关系表示如下:

(2)利用两圆的交点进行判断(代数法)
设由两圆的方程组成的方程组为
 
由此方程组得:有两组不同的实数解则两圆相交;有两组相同的实数解则两圆相切;无实数解则两圆相离.

两圆公切线条数的确定:

两圆的公切线的条数是由两圆的位置关系确定的,设两圆的圆心距为d,两圆的半径分别为
则当时,两圆外离,此时有四条公切线;
时,两圆外切,连心线过切点,此时有三条公切线,有外公切线两条,内公切线一条;
时,两圆相交,连心线垂直平分公共弦,有两条外公切线;
时,两圆内切,连心线过切点,此时只有一条公切线;
时,两圆内含,此时没有公切线。


发现相似题
与“在平面直角坐标系xOy中,圆C的方程为x2+y2-8x+15=0,若直线y=...”考查相似的试题有: