返回

高中二年级数学

首页
  • 解答题
    本小题满分12分)
    已知抛物线
    (I)求p与m的值;
    (II)若斜率为—2的直线l与抛物线G交于P、Q两点,点M为抛物线G上一点,其横坐标为1,记直线PM的斜率为k1,直线QM的斜率为k2,试问:是否为定值?请证明你的结论。

    本题信息:数学解答题难度容易 来源:未知
  • 本题答案
    查看答案
本试题 “本小题满分12分)已知抛物线(I)求p与m的值;(II)若斜率为—2的直线l与抛物线G交于P、Q两点,点M为抛物线G上一点,其横坐标为1,记直线PM的斜率为k1,直线Q...” 主要考查您对

抛物线的定义

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 抛物线的定义

抛物线的定义:

平面内与一个定点F和一条定直线l(F∈l)的距离相等的点的轨迹叫做抛物线,定点F叫做抛物线的焦点,定直线l叫做抛物线的准线,抛物线的定义也可以说成是:平面内与一个定点F和一条定直线l的距离的比等于1的点的轨迹.

抛物线中的有关概念:

定义 图形
抛物线的弦、焦点弦 连结抛物线上任意两点的线段,叫做抛物线的弦.
过抛物线焦点的弦,叫做焦点弦
抛物线的通径和焦参数 过焦点且垂直于抛物线的弦叫做抛物线的通径,通径长度的一半叫做抛物线的焦参数
焦点半径 抛物线上一点P和焦点的连线,叫做点P的焦点半径或焦半径
抛物线的焦准距 抛物线的焦点和它的准线间的距离,叫做焦准距,依据定义,显然有KO=OF即焦准距等于通径长的一半,焦准距用常数p表示

抛物线的规律总结:

①在抛物线的定义中的定点F不在直线l上,否则动点的轨迹就是过点F且垂直于直线l的一条直线,而不再是抛物线;
②抛物线的定义中指明了抛物线上的点到焦点的距离与到准线的距离相等,故在一些问题中,二者可以互相转化,这是利用抛物线定义解题的关键.