本试题 “如图,在单位长度为1的正方形网格中,一段圆弧经过网格的交点A、B、C。(1)请完成如下操作:①以点O为原点、竖直和水平方向为轴、网格边长为单位长,建立平面...” 主要考查您对垂直于直径的弦
直线与圆的位置关系(直线与圆的相交,直线与圆的相切,直线与圆的相离)
圆锥的计算
平面直角坐标系
等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
垂径定理:
垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
注:
(1)定理中的直径过圆心即可,可以是直径、半径、过圆心的直线或线段;
(2)此定理是证明等线段、等角、垂直的主要依据,同时也为圆的有关计算提供了方法和依据。
垂径定理的推论:
推论一:平分弦(不是直径)的直径垂直于这条弦,并且平分这条弦所对的两段弧
推论一:平分弦(不是直径)的直径垂直于这条弦,并且平分这条弦所对的两段弧
推论二:弦的垂直平分线经过圆心,并且平分这条弦所对的弧
推论三:平分弦所对的一条弧的直径垂直平分这条弦,并且平分这条弦所对的另一条弧
推论四:在同圆或者等圆中,两条平行弦所夹的弧相等
(证明时的理论依据就是上面的五条定理)
但是在做不需要写证明过程的题目中,可以用下面的方法进行判断:
一条直线,在下列5条中只要具备其中任意两条作为条件,就可以推出其他三条结论
1.平分弦所对的优弧
2.平分弦所对的劣弧
(前两条合起来就是:平分弦所对的两条弧)
3.平分弦 (不是直径)
4.垂直于弦
5.经过圆心
直线与圆的位置关系:
直线与圆的位置关系有三种:直线与圆相交,直线与圆相切,直线与圆相离。
(1)相交:直线和圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线,公共点叫做交点AB与⊙O相交,d<r;
(2)相切:直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫做圆的切线,这个唯一的公共点叫做切点。AB与⊙O相切,d=r。
(3)相离:直线和圆没有公共点时,叫做直线和圆相离,AB与圆O相离,d>r。(d为圆心到直线的距离)
圆锥:
以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的东西叫做圆锥体。该直角边叫圆锥的轴。
圆锥的组成构件:
①圆锥的高:圆锥的顶点到圆锥的底面圆心之间的距离叫做圆锥的高;
②圆锥的母线:圆锥的侧面展开形成的扇形的半径、底面圆周上点到顶点的距离。
③圆锥的侧面积:将圆锥的侧面沿母线展开,是一个扇形,这个扇形的弧长等于圆锥底面的周长,而扇形的半径等于圆锥的母线的长。
圆锥的侧面积就是弧长为圆锥底面的周长×母线/2;没展开时是一个曲面。
④圆锥有一个底面、一个侧面、一个顶点、一条高、无数条母线,且底面展开图为一圆形侧面展开图是扇形。
⑤圆锥侧面展开是一个扇形,已知扇形面积为二分之一rl。所以圆锥侧面积为二分之一母线长×弧长(即底面周长)。
另外,母线长等于底面圆直径的圆锥,展开的扇形就是半圆。
所有圆锥展开的扇形角度等于(底面直径÷母线)×180度。
圆锥的计算:
设圆锥底面圆的半径为r,母线长为l,n为圆心角度数
则圆锥的侧面积:,
圆锥的全面积:S=S侧+S底=,
圆锥的体积:V=Sh=·πr2h
底面周长(C)=2πr=(nπl)/
h=根号(l2-r2)
特殊位置的点的坐标的特点:
1.x轴上的点的纵坐标为零;y轴上的点的横坐标为零。
2.第一、三象限角平分线上的点横、纵坐标相等;第二、四象限角平分线上的点横、纵坐标互为相反数。
3.在任意的两点中,如果两点的横坐标相同,则两点的连线平行于纵轴;如果两点的纵坐标相同,则两点的连线平行于横轴。
4.点到轴及原点的距离
点到x轴的距离为|y|; 点到y轴的距离为|x|;点到原点的距离为x的平方加y的平方的平方根;
对称点:
1.关于x轴成轴对称的点的坐标,横坐标相同,纵坐标互为相反数。(横同纵反)
2.关于y轴成轴对称的点的坐标,纵坐标相同,横坐标互为相反数。(横反纵同)
3.关于原点成中心对称的点的坐标,横坐标与横坐标互为相反数,纵坐标与纵坐标互为相反数。(横纵皆反)
点的符号:
横坐标 纵坐标
第一象限:(+,+)正正
第二象限:(-,+)负正
第三象限:(-,-)负负
第四象限:(+,-)正负
x轴正半轴:(+,0)
x轴负半轴:(-,0)
y轴正半轴:(0,+)
y轴负半轴: (0,-)
x轴上的点的纵坐标为0,y轴上的点的横坐标为0。
原点:(0,0)
注:以数对形式(x,y)表示的坐标系中的点(如2,-4),“2”是x轴坐标,“-4”是y轴坐标。
其他公式:
1.坐标平面内的点与有序实数对一一对应。
2. 一三象限角平分线上的点横纵坐标相等。
3.二四象限角平分线上的点横纵坐标互为相反数。
4.一点上下平移,横坐标不变,即平行于y轴的直线上的点横坐标相同。
5.y轴上的点,横坐标都为0。
6.x轴上的点,纵坐标都为0。
7.坐标轴上的点不属于任何象限。
8.一个关于x轴对称的点横坐标不变,纵坐标变为原坐标的相反数。反之同样成立。
9.一个关于原点对称的点横纵坐标均为原坐标相反数。
10.与x轴做轴对称变换时,x不变,y变
11.与y轴做轴对称变换时,y不变,x变
12.与原点做轴对称变换时,y与x都变
与“如图,在单位长度为1的正方形网格中,一段圆弧经过网格的交点...”考查相似的试题有: