返回

初中三年级数学

首页
  • 解答题
    阅读以下的材料:
    如果两个正数a,b,即a>0,b>0,有下面的不等式:
    当且仅当a=b时取到等号,我们把叫做正数的算术平均数,把叫做正数a,b的几何平均数,于是上述不等式可表述为:两个正数的算术平均数不小于(即大于或等于)它们的几何平均数。它在数学中有广泛的应用,是解决最值问题的有力工具。下面举一例子:
    例:已知x>0,求函数的最小值。
    解:令a=x,,则有,得,当且仅当时,即x=2时,函数有最小值,最小值为2。
    根据上面回答下列问题:
    ①已知x>0,则当x=______时,函数取到最小值,最小值为______;
    ②用篱笆围一个面积为100m2的矩形花园,问这个矩形的长、宽各为多少时,所用的篱笆最短,最短的篱笆周长是多少;
    ③已知x>0,则自变量x取何值时,函数取到最大值,最大值为多少?
    本题信息:2011年河北省模拟题数学解答题难度极难 来源:叶新丽
  • 本题答案
    查看答案
本试题 “阅读以下的材料:如果两个正数a,b,即a>0,b>0,有下面的不等式:当且仅当a=b时取到等号,我们把叫做正数的算术平均数,把叫做正数a,b的几何平均数,于是上...” 主要考查您对

变量及函数

完全平方公式

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 变量及函数
  • 完全平方公式
函数:一般地,在一个变化过程中,如果有两个自变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数。 如果当x=a时,y=b,那么b叫做当自变量的值为a时的函数值。 变量: 在一个变化过程中,我们称数值发生变化的量为变量。(数学中,常常为x,而y则随x值的变化而变化),有些数值是不随变量而改变的,我们称它们为常量。 自变量:函数一个与它量有关联的变量,这一量中的任何一值都能在它量中找到对应的固定值。 因变量(函数):随着自变量的变化而变化,且自变量取唯一值时,因变量(函数)有且只有唯一值与其相对应。 变量的关系: 在具体情境中,感受两个变量之间的关系,就是一个变量随着另一个变量的变化情况,例如随着一个变量的变化,有的变量是呈匀速变化的,有的变量是呈不匀速变化的; 进而发现实际情景中的变量及其相互关系,并确定其中的自变量和因变量,会用运动变化的基本观点观察事物。也就是说,在两个有相依关系的变量中,其中一个是自变量,另一个是因变量; 自变量和因变量之间的变化关系可以用表格来刻画,也可以用图象来描述,并能对未来的趋势加以预测。 函数自变量的取值范围的确定: 使函数有意义的自变量的取值的全体,叫做函数自变量的取值范围. 自变量的取值范围的确定方法: 首先要考虑自变量的取值必须使解析式有意义, ①当解析式为整式时,自变量的取值范围是全体实数; ②当解析式是分数的形式时,自变量的取值范围是使分母不为零的所有实数; ③当解析式中含有平方根时,自变量的取值范围是使被开方数不小于零的实数; ④当函数解析式表示实际问题时,自变量的取值必须使实际问题有意义。
完全平方公式:
两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。叫做完全平方公式.为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式。
(a+b)2=a2+2ab+b2
(a-b)2=a2-2ab+b2

(1)公式中的a、b可以是单项式,也就可以是多项式。
(2)不能直接应用公式的,要善于转化变形,运用公式。
该公式是进行代数运算与变形的重要的知识基础,是因式分解中常用到的公式。该知识点重点是对完全平方公式的熟记及应用。难点是对公式特征的理解(如对公式中积的一次项系数的理解)。


结构特征:
1.左边是两个相同的二项式相乘,右边是三项式,是左边二项式中两项的平方和,加上或减去这两项乘积的2倍;
2.左边两项符号相同时,右边各项全用“+”号连接;
左边两项符号相反时,右边平方项用“+”号连接后再“-”两项乘积的2倍(注:这里说项时未包括其符号在内);
3..公式中的字母可以表示具体的数(正数或负数),也可以表示单项式或多项式等数学式.

记忆口诀:首平方,尾平方,2倍首尾。


使用误解:
①漏下了一次项;
②混淆公式;
③运算结果中符号错误;
④变式应用难于掌握。

注意事项:
1、左边是一个二项式的完全平方。
2、右边是二项平方和,加上(或减去)这两项乘积的二倍,a和b可是数,单项式,多项式。
3、不论是还是,最后一项都是加号,不要因为前面的符号而理所当然的以为下一个符号。


完全平方公式的基本变形:
(一)、变符号
例:运用完全平方公式计算:
(1)(-4x+3y)2
(2)(-a-b)2
分析:本例改变了公式中a、b的符号,以第二小题为例,处理该问题最简单的方法是将这个式子中的(-a)看成原来公式中的a,将(-b)看成原来公式中的b,即可直接套用公式计算。
解答:
(1)16x2-24xy+9y2
(2)a2+2ab+b2

(二)、变项数:
例:计算:(3a+2b+c)2
分析:完全平方公式的左边是两个相同的二项式相乘,而本例中出现了三项,故应考虑将其中两项结合运用整体思想看成一项,从而化解矛盾。所以在运用公式时,(3a+2b+c)2可先变形为[(3a+2b)+c]2,直接套用公式计算。
解答:9a2+12ab+6ac+4b2+4bc+c2

(三)、变结构
例:运用公式计算:
(1)(x+y)(2x+2y)
(2)(a+b)(-a-b)
(3)(a-b)(b-a)
分析;本例中所给的均是二项式乘以二项式,表面看外观结构不符合公式特征,但仔细观察易发现,只要将其中一个因式作适当变形就可以了,即
(1)(x+y)(2x+2y)=2(x+y)2
(2) (a+b)(-a-b)=-(a+b)2
(3) (a-b)(b-a)=-(a-b)2