返回

初中二年级数学

首页
  • 填空题
    如图,点A的坐标为(-1,0),点B在直线y=x上运动,当线段AB最短时,点B的坐标为_________。

    本题信息:数学填空题难度容易 来源:未知
  • 本题答案
    查看答案
本试题 “如图,点A的坐标为(-1,0),点B在直线y=x上运动,当线段AB最短时,点B的坐标为_________。” 主要考查您对

正比例函数的定义

正比例函数的图像

一次函数的定义

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 正比例函数的定义
  • 正比例函数的图像
  • 一次函数的定义
正比例函数定义:
一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数,其中k叫做比例系数。
正比例函数属于一次函数,但一次函数却不一定是正比例函数。
正比例函数是一次函数的特殊形式,即一次函数y=kx+b中,若b=0,即所谓“y轴上的截距”为零,则为正比例函数。
正比例函数的关系式表示为:y=kx(k为比例系数)
当k>0时(一三象限),k越大,图像与y轴的距离越近。函数值y随着自变量x的增大而增大。
当k<0时(二四象限),k越小,图像与y轴的距离越近。自变量x的值增大时,y的值则逐渐减小。

正比例函数性质:
定义域
R(实数集)

值域
R(实数集)

奇偶性
奇函数

单调性
当k>0时,图像位于第一、三象限,从左往右,y随x的增大而增大(单调递增),为增函数;
当k<0时,图像位于第二、四象限,从左往右,y随x的增大而减小(单调递减),为减函数。

周期性
不是周期函数。

对称性
对称点:关于原点成中心对称
对称轴:自身所在直线;自身所在直线的垂直平分线


图象:一条经过原点的直线。
性质:
(1)当k>0时,y随x的增大而增大;
(2)当k<0时,y随x的增大而减小。
1、在x允许的范围内取一个值,根据解析式求出y的值;
2、根据第一步求的x、y的值描出点;
3、作出第二步描出的点和原点的直线(因为两点确定一直线)。
正比例函数的图像:

一次函数的定义:
在某一个变化过程中,设有两个变量x和y,如果可以写成y=kx+b(k、b为常数,k≠0),那么我们就说y是x的一次函数,其中x是自变量,y是因变量。
①正比例函数是一次函数,但一次函数不一定是正比例函数;
②一般情况下,一次函数的自变量的取值范围时全体实数;
③如果一个函数是一次函数,则含有自变量x的式子是一次的,系数k不等于0,而b可以为任意实数。
一次函数基本性质:
1.在正比例函数时,x与y的商一定(x≠0)。在反比例函数时,x与y的积一定。
在y=kx+b(k,b为常数,k≠0)中,当x增大m时,函数值y则增大km,反之,当x减少m时,函数值y则减少km。

2.当x=0时,b为一次函数图像与y轴交点的纵坐标,该点的坐标为(0,b)。

3.当b=0时,一次函数变为正比例函数。当然正比例函数为特殊的一次函数。

4.在两个一次函数表达式中:
当两个一次函数表达式中的k相同,b也相同时,则这两个一次函数的图像重合;
当两个一次函数表达式中的k相同,b不相同时,则这两个一次函数的图像平行;
当两个一次函数表达式中的k不相同,b不相同时,则这两个一次函数的图像相交;
当两个一次函数表达式中的k不相同,b相同时,则这两个一次函数图像交于y轴上的同一点(0,b);
当两个一次函数表达式中的k互为负倒数时,则这两个一次函数图像互相垂直。

5.两个一次函数(y1=k1x+b1,y2=k2x+b2)相乘时(k≠0),得到的的新函数为二次函数,
该函数的对称轴为-(k2b1+k1b2)/(2k1k2);
当k1,k2正负相同时,二次函数开口向上;
当k1,k2正负相反时,二次函数开口向下。
二次函数与y轴交点为(0,b2b1)。

6.两个一次函数(y1=ax+b,y2=cx+d)之比,得到的新函数y3=(ax+b)/(cx+d)为反比例函数,渐近线为x=-b/a,y=c/a。
一次函数的判定:
①判断一个函数是否是一次函数,就是判断它是否能化成y=kx+b的形式;
②当k≠0,b=0时,这个函数即是k≠0一次函数,k≠0又是正比例函数;
③当k=0,b≠0时,这个函数不是一次函数;
④一次函数的一般形式是关于x的一次二项式,它可以转化为含x、y的二元一次方程。
发现相似题
与“如图,点A的坐标为(-1,0),点B在直线y=x上运动,当线段AB最...”考查相似的试题有: