本试题 “平面向量a与b的夹角为60°且|a|=2,|b|=1,则向量a+2b的模为( )A.23B.12C.32D.10” 主要考查您对向量数量积的含义及几何意义
向量模的计算
等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
两个向量的夹角的定义:
对于非零向量,,作称为向量,的夹角,当=0时,,同向,当=π时,,反向,
当时,垂直。
两个向量数量积的含义:
如果两个非零向量,,它们的夹角为,我们把数量叫做与的数量积(或内积或点积),记作:,即。
叫在上的投影。
规定:零向量与任一向量的数量积是0,注意数量积是一个实数,不再是一个向量。
两个向量数量积的几何意义:
数量积等于的模与在上的投影的乘积。
向量数量积的性质:
设两个非零向量
(1);
(2);
(3);
(4);
(5)当,同向时,;当与反向时,;当为锐角时,为正且,不同向,;当为钝角时,为负且,不反向,。
向量的模:
设,则有向线段的长度叫做向量的长度或模,记作:,则 。
向量模的坐标表示:
(1)若,则;
(2)若,那么。
求向量的模:
求向量的模主要是利用公式来解。
与“平面向量a与b的夹角为60°且|a|=2,|b|=1,则向量a+2b的模为(...”考查相似的试题有: