返回

初中一年级数学

首页
  • 单选题
    若a=-2×32,b=(-2×3)2,c=-(2×4)2,则下列大小关系中正确的是
    [     ]

    A.a>b>0
    B.b>c>a
    C.b>a>c
    D.c>a>b
    本题信息:2011年同步题数学单选题难度一般 来源:叶新丽
  • 本题答案
    查看答案
本试题 “若a=-2×32,b=(-2×3)2,c=-(2×4)2,则下列大小关系中正确的是[ ]A.a>b>0B.b>c>aC.b>a>cD.c>a>b” 主要考查您对

比较有理数的大小

有理数乘法

有理数的乘方

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 比较有理数的大小
  • 有理数乘法
  • 有理数的乘方
比较有理数大小的方法:
有理数是整数和分数的统称,一切有理数都可以化成分数的形式。
数轴法:
1、在数轴上表示的两个数,右边的总比左边的数大。
2、正数都大于零,负数都小于零,正数大于负数。

绝对值法:
1、两个正数比较大小,绝对值大的数大;
2、两个负数比较大小,绝对值大的数反而小。

差值法:
设a、b为任意两有理数,两数做差,若a-b>0,则a>b ; 若a-b<0则a<b
商值比较法:
设a、b为任意两有理数,两数做商,若a/b>1,则a>b;若a/b<1,则a<b
有理数乘法定义:
求两个有理数因数的积的运算叫做有理数的乘法。
有理数乘法的法则:
(1)同号两数相乘,取正号,并把绝对值相乘;
(2)异号两数相乘,取负号,并把绝对值相乘;
(3)任何数与0相乘都得0。
几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正。

有理数乘法的运算律:
(1)交换律:ab=ba;
(2)结合律:(ab)c=a(bc);
(3)分配律:a(b+c)=ab+ac。
记住乘法符号法则:
1.几个不为0的数相乘,积的符号由负因数的个数决定,当负因数的个数是奇数时,积的符号为负;相反,当负因数的个数是偶数时,积的符号为正。
2.几个数相乘,只要有一个数为0,积就是0。

乘法法则的推广:
1.几个不等于零的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正;
2.几个数相乘,有一个因数为零,积就为零;
3.几个不等于零的数相乘,首先确定积的符号,然后把绝对值相乘。

有理数乘法的注意:
1.乘法是指求几个相同加数的和的简便算法,引入负数后,乘法的意义没有改变;
2.有理数乘法与有理数加法的运算步骤一样:确定符号、确定绝对值;
3.掌握乘法法则的关键是会确定积的符号:“两数相乘,同号得正,异号得负”,切勿与有理数加法的符号法则混淆。
有理数乘方的定义:
求n个相同因数的积的运算叫做乘方,乘方的结果叫做幂。在an中,a叫做底数,n叫做指数。
22、73也可以看做是乘方运算的结果,这时它们表示数,分别读作“2的2次幂”、“7的3次幂”,其中2、7叫做底数,6、3叫做指数。
①习惯上把22叫做2的平方,把23叫做2的立方;
②当底数是负数或分数时,要先用括号将底数括上,再在其右上角写指数,指数要写得小些。
乘方的性质:
乘方是乘法的特例,其性质如下:
(1)正数的任何次幂都是正数;
(2)负数的偶次幂是正数,负数的奇次幂是负数;
(3)0的任何(除0以外)次幂都是0;
(4)a2是一个非负数,即a2≥0。
有理数乘方法则:
①负数的奇次幂是负数,负数的偶次幂是正数。例如:(-2)3=-8,(-2)2=4
②正数的任何次幂都是正数,0的任何正整数次幂都是0.例如:22=4,23=8,03=0

点拨:
①0的次幂没意义;
②任何有理数的偶次幂都是非负数;
③由于乘方是乘法的特例,因此有理数的乘方运算可以用有理数的乘法运算完成;
④负数的乘方与乘方的相反数不同。
乘方示意图: