本试题 “已知曲线C的极坐标方程为ρ=4cosθ,直线l的参数方程是:(t为参数),(Ⅰ)求曲线C的直角坐标方程,直线l的普通方程;(Ⅱ)将曲线C横坐标缩短为原来的,再向左...” 主要考查您对点到直线的距离
简单曲线的极坐标方程
直线的参数方程
等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
点到直线的距离公式:
1、若点P(x0,y0)在直线Ax+By+C=0(A,B不同时为0)上,则Ax0+By0+C=0。
2、若点P(x0,y0)不在直线Ax+By+C=0(A,B不同时为0)上,则Ax0+By0+C≠0,此时点P(x0,y0)直线Ax+By+C=0(A,B不同时为0)的距离d=。
点到直线的距离公式的理解:
①点到直线的距离是直线上的点与直线外一点的连线的最短距离(这是从运动观点来看的).
②若给出的直线方程不是一般式,则应先把方程化为一般式,再利用公式求距离.
③点到直线的距离公式适用于任何情况,其中点P在直线l上时,它到直线的距离为0.
④点到几种特殊直线的距离:
曲线的极坐标方程的定义:
一般地,在极坐标系中,如果平面曲线C上任意一点的极坐标中至少有一个满足方程f(ρ,θ)=0,并且坐标适合方程f(ρ,θ)=0的点都在曲线上,那么方程f(ρ,θ)=0叫做曲线C的极坐标方程。
求曲线的极坐标方程的常用方法:
直译法、待定系数法、相关点法等。
圆心为(α,β)(a>0),半径为a的圆的极坐标方程为,此圆过极点O。
直线的极坐标方程:
直线的极坐标方程是ρ=1/(2cosθ+4sinθ)。
圆的极坐标方程:
直线的参数方程:
过定点倾斜角为α的直线的参数方程为(t为参数)。
直线的参数方程及其推导过程:
设e是与直线l平行且方向向上(l的倾斜角不为0)或向右(l的倾斜角为0)的单位方向向量(单位长度与坐标轴的单位长度相同).直线l的倾斜角为α,定点M0、动点M的坐标分别为
直线的参数方程中参数t的几何意义是:表示参数t对应的点M到定点Mo的距离,当同向时,t取正数;当异向时,t取负数;当点M与Mo重合时,t=0.
与“已知曲线C的极坐标方程为ρ=4cosθ,直线l的参数方程是:(t为...”考查相似的试题有: