本试题 “y=(m﹣2)是反比例函数,则m的值为 .” 主要考查您对反比例函数的定义
反比例函数的图像
反比例函数的性质
求反比例函数的解析式及反比例函数的应用
等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
一般地,函数 (k是常数,k≠0)叫做反比例函数,自变量x的取值范围是x≠0的一切实数,函数值的取值范围也是一切非零实数。
注:
(1)因为分母不能为零,所以反比例函数函数的自变量x不能为零,同样y也不能为零;
(2)由,所以反比例函数可以写成的形式,自变量x的次数为-1;
(3)在反比例函数中,两个变量成反比例关系,即,因此判定两个变量是否成反比例关系,应看是否能写成反比例函数的形式,即两个变量的积是不是一个常数。
表达式:
x是自变量,y是因变量,y是x的函数
自变量的取值范围:
①在一般的情况下,自变量x的取值范围可以是不等于0的任意实数;
②函数y的取值范围也是任意非零实数。
反比例函数性质:
①反比例函数的表达式中,等号左边是函数值y,等号右边是关于自变量x的分式,分子是不为零的常数k,分母不能是多项式,只能是x的一次单项式;
②反比例函数表达式中,常数(也叫比例系数)k≠0是反比例函数定义的一个重要组成部分;
③反比例函数 (k是常数,k≠0)的自变量x的取值范围是不等式0的任意实数,函数值y的取值范围也是非零实数。
函数图象位置和函数值的增减:
反比例函数:,反比例函数的性质主要研究它的图象的位置和函数值的增减情况,列表归纳如下:
反比例函数解析式的确定方法:
由于在反比例函数关系式 :y= 中,只有一个待定系数k,确定了k的值,也就确定了反比例函数。因此,只需给出一组x、y的对应值或图象上一点的坐标,代入中即可求出k的值,从而确定反比例函数的关系式。但在实际求反比例函数的解析式时,应该具体问题具体分析。
反比例函数的应用:
建立函数模型,解决实际问题。
与“y=(m﹣2)是反比例函数,则m的值为 .”考查相似的试题有: