本题信息:数学单选题难度一般 来源:未知
本试题 “已知x,y满足x=3-(y-2)2,则y+1x+3的取值范围是( )A.[33,+∞)B.[0,33]C.[0,3+1]D.[” 主要考查您对 直线与圆的位置关系 等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
直线与圆的位置关系:
由直线与圆的公共点的个数,得出以下直线和圆的三种位置关系:(1)相交:直线与圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线。(2)相切:直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫做圆的切线,唯一的公共点叫做切点。(3)相离:直线和圆没有公共点时,叫做直线和圆相离。 其图像如下:
直线和圆的位置关系的性质:
(1)直线l和⊙O相交d<r(2)直线l和⊙O相切d=r;(3)直线l和⊙O相离d>r。
直线与圆位置关系的判定方法:
(1)代数法:判断直线Ax+By+C=0和圆x2+y2+Dx+Ey+F=0的位置关系,可由 推出mx2+nx+p=0,利用判别式△进行判断.△>0则直线与圆相交;△=0则直线与圆相切;△<0则直线与圆相离.(2)几何法:已知直线Ax+By+C=0和圆,圆心到直线的距离 d<r则直线和圆相交;d=r则直线和圆相切;d>r则直线和圆相离.特别提醒:(1)上述两种方法,以利用圆心到直线的距离进行判定较为简捷,而判别式法也适用于直线与椭圆、双曲线、抛物线位置关系的判断.(2)直线与圆相交,应抓住半径、弦心距、半弦长组成的直角三角形,可使解法简单.
直线与圆位置关系的判定方法列表如下:
直线与圆相交的弦长公式:
(1)几何法:如图所示,直线l与圆C相交于A、B两点,线段AB的长即为l与圆相交的弦长。设弦心距为d,半径为r,弦为AB,则有|AB|= (2)代数法:直线l与圆交于直线l的斜率为k,则有当直线AB的倾斜角为直角,即斜率不存在时,|AB|=
与“已知x,y满足x=3-(y-2)2,则y+1x+3的取值范围是( )A.[33,...”考查相似的试题有: