返回

高中数学

首页
  • 解答题
    如图,⊙O半径为2,直径CD以O为中心,在⊙O所在平面内转动,当CD 转动时,OA固定不动,0°≤∠DOA≤90°,且总有BCOA,ABCD,若OA=4,BC与⊙O交于E,连AD,设CE为x,四边形ABCD的面积为y.
    (1)求y关于x的函数解析式,并指出x的取值范围;
    (2)当x=2
    3
    (3)时,求四边形ABCD在圆内的面积与四边形ABCD的面积之比;
    (4)当x取何值时,四边形ABCD为直角梯形?连EF,此时OCEF变成什么图形?(只需说明结论,不必证明).
    魔方格

    本题信息:2004年上海模拟数学解答题难度较难 来源:未知
  • 本题答案
    查看答案
本试题 “如图,⊙O半径为2,直径CD以O为中心,在⊙O所在平面内转动,当CD 转动时,OA固定不动,0°≤∠DOA≤90°,且总有BC∥OA,AB∥CD,若OA=4,BC与⊙O交于E,连AD,设CE为x...” 主要考查您对

指数函数模型的应用

对数函数模型的应用

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 指数函数模型的应用
  • 对数函数模型的应用
指数函数模型的定义

恰当选择自变量将问题的目标表示成自变量的函数f(x)=a·bx+c(a、b、c为常数,a≠0,b>0,b≠1)的形式,进而结合指数函数的性质解决问题。

指数型复合函数的性质的应用:

(1)与指数函数有关的复合函数基本上有两类:
;②.无论是哪一类,要搞清楚复合过程,才能确定复合函数的值域和单调区间,具体问题中,a的取值不定时,要对a进行分类讨论.
(2)对于形如一类的指数型复合函数,有以下结论:
①函数的定义域与f(x)的定义域相同;
②先确定函数f(x)的值域,再根据指数函数的值域、单调性,确定函数的值域;
③当a>l时,函数与函数f(x)的单调性相同;当O<a<l时,函数与函数f(x)的单调性相反.


对数函数模型的定义:

恰当选择自变量将问题的目标表示成自变量的函数f(x)=mlogax+n(m、n、a为常数,m≠0,a>0,a≠1)的形式,进而结合对数函数的性质解决问题。

对数函数模型解析式

f(x)=mlogax+n(m、n、a为常数,m≠0,a>0,a≠1)


用函数模型解函数应用题的步骤:

1.审题:弄清题意,分清条件和结论,确定数量关系,初步选择数学模型;
2.建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型;
3.求模:求解数学模型,得出数学结论;
4.还原:将数学问题还原为实际问题的意义。