返回

初中一年级数学

首页
  • 单选题
    下列说法正确的是
    [     ]

    A.两点之间的直线最短
    B.当时钟指向3:30时,时针与分针的夹角是90°
    C.平面内,过一点有且只有一条直线与已知直线垂直
    D.平面内,过一点有且只有一条直线与已知直线平行
    本题信息:2010年四川省期末题数学单选题难度一般 来源:马明明
  • 本题答案
    查看答案
本试题 “下列说法正确的是[ ]A.两点之间的直线最短B.当时钟指向3:30时,时针与分针的夹角是90°C.平面内,过一点有且只有一条直线与已知直线垂直D.平面内,过一点...” 主要考查您对

直线,线段,射线

角的概念

平行线的性质,平行线的公理

垂直的判定与性质

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 直线,线段,射线
  • 角的概念
  • 平行线的性质,平行线的公理
  • 垂直的判定与性质
基本概念:
直线:一根拉得很紧的线,就给我们以直线的形象,直线是直的,并且是向两方无限延伸的。一条直线可以用一个小写字母表示。
线段:直线上两个点和它们之间的部分叫做线段,这两个点叫做线段的端点。一条线段可用它的端点的两个大写字母来表示。
射线:直线上一点和它一旁的部分叫做射线。这个点叫做射线的端点。一条射线可以用端点和射线上另一点来表示。
注意:
①线和射线无长度,线段有长度。
②直线无端点,射线有一个端点,线段有两个端点。

直线、射线、线段的基本性质:

图形 表示法 端点 延长线 能否度量 基本性质
直线 没有端点的一条线 一条线,
不要端点
可以向两边无限延长 两端都没有端点,可以无限延长,不可测量的线
射线 只有一个端点的一条线 一条线,
只有一边有端点
一个 可以向一边无限延长 一端有端点,可以向一边无限延长,不可测量的线
线段 两边都有端点的一条线 一条线,两边都有端点 两个 不能延长 两端都有端点,不能延长,可测量的线

直线、射线、线段区别:
直线没有端点,2边可无限延长;
射线有1端有端点,另一端可无限延长;
线段,有2个端点,而2个端点间的距离就是这条线段的长度。

直线除了“直”这个特点外,还有一个很重要的特点,那就是它可以向两个方向无限延伸,永远没有尽头,所以,直线是不可能度量的。因此,在画直线时,要画出没有端点的直线,表示可以无限延伸;
射线只有一个端点,可以向一个方向无限延伸,也永远没有尽头。所以,射线也是不可能度量的。直线上任意的一点可以把这条直线分成两条方向相反的射线,因此,射线是直线的一部分。虽然射线是直线的一部分,但由于它们都是不能度量的,所以,它们之间没有长短可以比较;
线段有两个端点,它有一定的长度,可以度量。线段也是直线的一部分。
各种图形表示方法:
直线:一个小写字母或两个大写字母,但前面必须加“直线”两字,如:直线l,直线m;直线AB,直线CD。
例:直线l;直线AB。
射线:一个小写字母或端点的大写字母。和射线上的一个大写字母,前面必须加“射线”两字。如:射线a;射线OA。
例:射线AB。
线段:用表示端点的大写字母表示,如线段AB;用一个小写字母表示,如线段a。
例:线段AB;线段a 。

角的基本概念:
从静态角度认识角:由一个点出发的两条射线组成的图形叫角;
从动态角度认识角:一条射线绕着它的顶点旋转到另一个位置,则这两条射线组成的图像叫角。有公共端点的两条射线组成的图形叫做角,这个公共端点叫做角的顶点,这两条射线叫做角的边。
①因为射线是向一方无限延伸的,所以角的两边无所谓长短,即角的大小与它的边长无关。
②角的大小可以度量,可以比较。
③根据角的度数,角可以分为锐角、直角、钝角、平角、周角。
角的表示:角可以用大写英文字母、阿拉伯数字或小写的希腊字母表示,如∠1,∠α,∠BAD等。


角的分类
根据角的度数,角可以分为锐角、直角、钝角、平角、周角。
平角:180的角,当角的两边在一条直线上时,组成的角叫做平角。即射线OA绕点O旋转,当终边在始边OA的反向延长线上时所成的角;
直角:90的角,即线OA绕点O旋转,当终边与始边垂直时所成的角,平角的一半叫做直角;
锐角:大于0小于90的角,小于直角的角叫做锐角;
钝角:大于90小于180的角,大于直角且小于平角的角叫做钝角。
周角:360的角,即射线OA绕点O旋转,当终边与始边重合时所成的角。

角的性质:
①角的大小与边的长短无关,只与构成角的两条射线的幅度大小有关;
②角的大小可以度量,可以比较;
③角可以参与运算。

角的度量:
角的度量有如下规定:把一个平角180等分,每一份就是1度的角,单位是度,用“。”,1度记作“1°”,n度记作“n°”。把1°的角60等分,每一份叫做1分的角,1分记作“1′”。把1′的角60等分,每一份叫做1秒的角,1秒记作“1″”。1°=60′=3600″。

平行公理:过直线外一点有且只有一条直线与已知直线平行。
推论(平行线的传递性):平行同一直线的两直线平行。
∵a∥c,c ∥b
∴a∥b。

平行线的性质:
1. 两条平行被第三条直线所截,同位角相等。
简单说成:两直线平行,同位角相等。
2. 两条平行线被第三条直线所截,内错角相等。
简单说成:两直线平行,内错角相等。
3 . 两条平行线被第三条直线所截,同旁内角互补。
简单说成:两直线平行,同旁内角互补。


平行线的性质公理注意:
①注意条件“经过直线外一点”,若经过直线上一点作已知直线的平行线,就与已知直线重合了;
②平行公理体现了平行线的存在性和唯一性;
③平行公理的推论体现了平行线的传递性。
④在两直线平行的前提下才存在同位角相等、内错角相等、同旁内角互补的结论。这是平行线特有的性质。不要一提同位角或内错角就认为他们相等,一提同旁内角就认为互补,若没有两直线平行的条件,他们是不成立的。

垂线的定义:
两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直。其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
直线AB,CD互相垂直,记作“AB⊥CD”(或“CD⊥AB”),读作“AB垂直于CD”(或“CD垂直于AB”)。
垂线的性质:
性质1:过一点有且只有一条直线与已知直线垂直。
性质2:连结直线外一点与直线上各点的所有线段中,垂线段最短。简称:垂线段最短。
垂直的判定:垂线的定义。