返回

高中数学

首页
  • 单选题
    已知点E在△ABC所在的平面且满足
    AB
    +
    AC
    AE
    (λ≠0)
    ,则点E一定落在(  )
    A.BC边的垂直平分线上
    B.BC边的中线所在的直线上
    C.BC边的高线所在的直线上
    D.BC边所在的直线上

    本题信息:数学单选题难度一般 来源:未知
  • 本题答案
    查看答案
本试题 “已知点E在△ABC所在的平面且满足AB+AC=λAE(λ≠0),则点E一定落在( )A.BC边的垂直平分线上B.BC边的中线所在的直线上C.BC边的高线所在的直线上D.BC边所在的...” 主要考查您对

平面向量的应用

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 平面向量的应用

平面向量在几何、物理中的应用

1、向量在平面几何中的应用:
(1)证明线段相等平行,常运用向量加法的三角形法则、平行四边形法则,有时也用到向量减法的定义;
(2)证明线段平行,三角形相似,判断两直线(或线段)是否平行,常运用到向量共线的条件;
(3)证明垂直问题,常用向量垂直的充要条件;
1、向量在三角函数中的应用:
(1)以向量为载体研究三角函数中最值、单调性、周期等三角函数问题;
(2)通过向量的线性运算及数量积、共线来解决三角形中形状的判断、边角的大小与关系。
2、向量在物理学中的应用:
由于力、速度是向量,它们的分解与合成与向量的加法相类似,可以用向量方法来解决,力做的功就是向量中数量积的一种体现。
3、向量在解析几何中的应用:
(1)以向量为工具研究平面解析几何中的坐标、性质、长度等问题;
(2)以向量知识为工具研究解析几何中常见的轨迹与方程问题。


平面向量在几何、物理中的应用

1、用向量解决几何问题的步骤:
(1)建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面问题转化为向量问题;
(2)通过向量运算,研究几何元素之间的关系,如:距离,夹角等;
(3)把运算结果“翻译”成几何关系。
2、用向量中的有关知识研究物理中的相关问题,步骤如下:
(1)问题的转化,即把物理问题转化为数学问题;
(2)模型的建立,即建立以向量为主题的数学模型;
(3)求出数学模型的有关解;
(4)将问题的答案转化为相关的物理问题。


发现相似题
与“已知点E在△ABC所在的平面且满足AB+AC=λAE(λ≠0),则点E一定落...”考查相似的试题有: