返回

初中一年级数学

首页
  • 操作题
    利用方格纸画图:
    (1)在下边的方格纸中,过C点画CD∥AB,过C点画CE⊥AB于E;
    (2)以CF为一边,画正方形CFGH,若每个小格的面积是1cm2,则正方形CFGH的面积是多少

    本题信息:2009年期末题数学操作题难度一般 来源:张栩桭(初中数学)
  • 本题答案
    查看答案
本试题 “利用方格纸画图:(1)在下边的方格纸中,过C点画CD∥AB,过C点画CE⊥AB于E;(2)以CF为一边,画正方形CFGH,若每个小格的面积是1cm2,则正方形CFGH的面积是多少” 主要考查您对

认识平面图形

平行线的判定

垂直的判定与性质

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 认识平面图形
  • 平行线的判定
  • 垂直的判定与性质
平面图形:
有些几何图形(如线段、角、三角形、长方形、圆等)的各个部分都在同一平面内,它们是平面图形。
如直线、射线、角、三角形、平行四边形、长方形(正方形)、梯形和圆都是几何图形,这些图形所表示的各个部分都在同一平面内,称为平面图形。
例如:有一组对边平行的四边形一定是平面图形。(两条平行线确定一个平面)
平面图形的大小,叫做它们的面积
点的形成是线,线的形成是面,面的形成是体。
平面图形分类:

常见的平面图形图示:

从左到右依次为:长方形、正方形、三角形、圆、椭圆、
                             菱形、五边形、六边形。
几何图形知识体系图:

平行线的概念
在同一个平面内,不相交的两条直线叫做平行线。平行用符号“∥,如“AB∥CD”,读作“AB平行于CD”。
注意:
①平行线是无限延伸的,无论怎样延伸也不相交。
②当遇到线段、射线平行时,指的是线段、射线所在的直线平行。

平行线的判定平行线的判定公理:
(1)两条直线被第三条直线所截,如果同位角相等,那么两直线平行。简称:同位角相等,两直线平行。
(2)两条直线被第三条直线所截,如果内错角相等,那么两直线平行。简称:内错角相等,两直线平行。
(3)两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。简称:同旁内角互补,两直线平行。
还有下面的判定方法:
(1)平行于同一条直线的两直线平行。
(2)垂直于同一条直线的两直线平行。
(3)平行线的定义。

判定方法的逆应用:
在同一平面内,两直线不相交,即平行。
两条直线平行于一条直线,则三条不重合的直线互相平行。
两直线平行,同位角相等。
两直线平行,内错角相等。
两直线平行,同旁内角互补。
6a⊥c,b⊥c则a∥b。


垂线的定义:
两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直。其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
直线AB,CD互相垂直,记作“AB⊥CD”(或“CD⊥AB”),读作“AB垂直于CD”(或“CD垂直于AB”)。
垂线的性质:
性质1:过一点有且只有一条直线与已知直线垂直。
性质2:连结直线外一点与直线上各点的所有线段中,垂线段最短。简称:垂线段最短。
垂直的判定:垂线的定义。
发现相似题
与“利用方格纸画图:(1)在下边的方格纸中,过C点画CD∥AB,过C...”考查相似的试题有: