本试题 “(坐标系与参数方程选做题)在极坐标系中,过点(2,π4)作圆ρ=2的切线,则切线的直角坐标方程是______.” 主要考查您对简单曲线的极坐标方程
等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
曲线的极坐标方程的定义:
一般地,在极坐标系中,如果平面曲线C上任意一点的极坐标中至少有一个满足方程f(ρ,θ)=0,并且坐标适合方程f(ρ,θ)=0的点都在曲线上,那么方程f(ρ,θ)=0叫做曲线C的极坐标方程。
求曲线的极坐标方程的常用方法:
直译法、待定系数法、相关点法等。
圆心为(α,β)(a>0),半径为a的圆的极坐标方程为,此圆过极点O。
直线的极坐标方程:
直线的极坐标方程是ρ=1/(2cosθ+4sinθ)。
圆的极坐标方程:
与“(坐标系与参数方程选做题)在极坐标系中,过点(2,π4)作圆ρ=...”考查相似的试题有: