返回

小学四年级数学

首页
  • 口算题
    你能根据第一个算式的结果,直接写出下面两道算式的结果吗?
    30×6=180
    180÷6=
    180÷30=
    50×8= 400
    400÷8=
    400÷50=
    40×7=280
    280÷7=
    280÷40=
    60×50=3000
    3000÷60=
    3000÷50=

    本题信息:2012年同步题数学口算题难度一般 来源:张思媛
  • 本题答案
    查看答案
本试题 “你能根据第一个算式的结果,直接写出下面两道算式的结果吗?30×6=180180÷6=180÷30=50×8= 400400÷8=400÷50=40×7=280280÷7=280÷40=60×50=30003000÷60=3000÷50=” 主要考查您对

除数是一位数的除法

除数是两位数的除法

和差积商的变化规律

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 除数是一位数的除法
  • 除数是两位数的除法
  • 和差积商的变化规律
学习目标:
掌握:(1)口算除法、估算
(2)笔算除法:一位数除两、三位数
(3)除法的验算:利用乘法验算除法
(4)除式中的零:被除数中间、末尾有零的除法,商中间、末尾有零的除法
方法点拨:
(一)口算除法
 
1.口算方法:  口算整百数除以一位数时,要把整百数看作几个百来计算。口算几百几十除以一位数时,要将几百几十数看作是几个十来计算。 

2.估算方法:  进行估算时,要把被除数看作与它最接近的整百数或几百几十数,也可以将被除数看作与它最接近的除数的倍数。 

(二)笔算除法 
1.多位数除以一位数的笔算方法:  是从被除数的最高位除起。在理解的基础上,可以用以下五个词来帮助记忆:一商、二乘、三减、四比、五落。也就是说首先根据除数想商;在将商与除数相乘;第三步用被除数减去乘得的数;第四步如果有余数,要与除数比大小,余数要小于除数;第五步把下一位上的数落下来,与余数合起来继续除。(0除以不为0的任何数都得0,0不能作为除数。) 

2.判断商是几位数的方法:  比较除数与被除数最高位的大小,如果被除数最高位上的数比除数小,那么商一定比被除数少一位;如果被除数最高位上的数比除数大或相等,那么商和被除数的位数相等。

3.除法的验算方法:  商×除数(+余数)=被除数
学习目标:
掌握除数是两位数除法的计算法则和试商方法,能够熟练地笔算除数是两位数的除法,初步掌握除法的验算方法,养成验算的习惯。
除数是两位数的除法与除数是一位数的除法有什么不同的地方?有什么相同的地方?
相同:
1、从被除数的高位除起。
2、除到被除数的哪一位,就在那一位上面写商。
3、每求出一位商余下的数必须比除数小。

不同:
除数是一位数 除数是两位数
商的最高位的确定 先看被除数的第一位,第一位不够除,再看前两位 先看被除数的前两位,前两位不够除,再看前三位
求商的方法 直接用口诀 试商

除数是两位数的除法法则:
1、从被除数的高位起,先用除数试除被除数的前两位数,如果它比除数小,再试除前三位数。
2、除到被除数的哪一位,就在那一位上面写商。
3、每求出一位商,余下的数必须比除数小。

记忆口诀:
除数两位看两位,两位不够看三位, 
除到哪位商哪位,熟记口诀定好位,
试商方法要灵活,同头够除要商1,    
同头无除商8、9,9除得商要相同,  
5除得商要加倍,不够商1零占位, 
除首去尾商减1,除首进位商加1。


学习目标:
理解并探索运算中蕴含的规律,并应用规律解决问题。
和的变化规律
(一)如果一个加数增加一个数,另一个加数不变,那么它们的和也增加同一个数。
(二)如果一个加数减少一个数,另一个加数不变,那么,它们的和也减少同一个数.
(三)如果一个加数增加一个数,另一个加数减少同样的加数,那么,它们的和不变.
(四)如果一个加数增加一个数m,另一个加数增加一个数n,那么,它们的和就增加(m+n).
(五)如果一个加数减少一个数m,另一个加数减少一个数n,那么,它们的和就减少(m+n).
(六)如果一个加数增加一个数m,另一个加数减少一个数n,当m>n时,它们的和就增加(m-n);当m<n时,它们的和就减少(n-m).

差的变化规律
(一)如果被减数增加或减少一个数,减数不变,那么它们的差也增加或减少同一个数.
(二)如果减数增加或减少一个数,被减数不变,那么,它们的差就减少或增加同一个数.
(三)如果被减数和减数同时增加或减少同一个数,那么,它们的差相等.
(四)如果被减数增加一个数m,减数减少一个数n,那么,它们的差就增加(m+n).
(五)如果被减数减少一个数m,减数增加一个数n,那么,它们的差就减少(m+n)
(六)如果被减数增加一个数m,减数增加一个数n,那么,当m>n时,它们的差就增加(m+n);当m<n时,它们的差就减少(n-m).
(七)如果被减数减少一个数m,减数减少一个数n,那么,当m>n时,它们的差要减少(m-n);当m<n时,它们的差要增加(n-m).

积的变化规律
(一)如果一个因数扩大m倍,另一个因数不变,那么,它们的积也扩大m倍.
(二)如果一个因数缩小m倍,另一个因数不变,那么,它们的积也缩小m倍.
(三)如果一个因数扩大m倍,另一个因数缩小相同的倍数,那么它们的积不变.
(四)如果一个因数扩大m倍,另一个因数扩大n倍,那么,它们的积扩大(m×n)倍.
(五)如果一个因数缩小m倍,另一个因数缩小n倍,那么,它们的积就缩小(m×n)倍.
(六)如果一个因数扩大m倍,另一个因数缩小n倍,那么,当m>n时它们的积扩大(m÷n)倍,当m<n时,它们的积就缩小(n÷m)倍.

商的变化规律
(一)如果被除数和除数同时扩大或缩小相同的倍数,那么,它们的商不变.
(二)如果被除数扩大(或缩小)m倍,除数不变,那么,它们的商就扩大(或缩小)m倍.
(三)如果除数扩大或缩小m倍,被除数不变,那么,它们的商反而缩小或扩大m倍.
(四)如果被除数扩大m倍,除数缩小n倍,那么,它们的商就扩大(m×n)倍.
(五)如果被除数缩小m倍,除数扩大n倍,那么,它们的商就缩小(m×n)倍.
(六)如果被除数扩大m倍,除数扩大n倍,当m>n时,它们的商就扩大(m÷n)倍,当m<n时,它们的商就缩小(n÷m)倍.
(七)如果被除数缩小m倍,除数缩小n倍,当m>n时,它们的商就缩小(m÷n)倍,当m<n时,它们的商就扩大(n÷m)倍.