返回

初中二年级数学

首页
  • 探究题
    (1)如图,已知:AD是△ABC中BC边的中线,则S△ABD=S△ACD,依据是                 
    规定:若一条直线l把一个图形分成面积相等的两个图形,则称这样的直线l叫做这个图形的等积直线。根据此定义,在图1中易知直线为△ABC的等积直线。

    (2)如图2,在矩形ABCD中,直线l经过AD,BC边的中点M. N,请你判断直线l是否为该矩形的等积直线?            (填“是”或“否”)。在图2中再画出一条该矩形的等积直线。(不必写作法)
    (3)如图3,在梯形ABCD中,直线l经过上下底AD. BC边的中点M. N,请你判断直线l是否为该梯形的等积直线?             (填“是”或“否”)。
    (4)在图3中,过M. N的中点O任作一条直线PQ分别交AD,BC于点P. Q,如图4所示,猜想PQ是否为该梯形的等积直线?请说明理由

    本题信息:2009年河北省期中题数学探究题难度较难 来源:王素菲
  • 本题答案
    查看答案
本试题 “(1)如图,已知:AD是△ABC中BC边的中线,则S△ABD=S△ACD,依据是 。规定:若一条直线l把一个图形分成面积相等的两个图形,则称这样的直线l叫做这个图形的等积...” 主要考查您对

三角形的中线,角平分线,高线,垂直平分线

矩形,矩形的性质,矩形的判定

梯形,梯形的中位线

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 三角形的中线,角平分线,高线,垂直平分线
  • 矩形,矩形的性质,矩形的判定
  • 梯形,梯形的中位线
三角形的中线:
在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。由于三角形有三条边,所以一个三角形有三条中线。且三条中线交于一点。这点称为三角形的重心。
每条三角形中线分得的两个三角形面积相等。
角平分线:
三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线。
三角形的角平分线不是角的平分线,是线段。角的平分线是射线。
高线:
从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。
线段的垂直平分线:
经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线。

注意:要证明一条线为一个线段的垂直平分线,应证明两个点到这条线段的距离相等且这两个点都在要求证的直线上才可以证明
巧计方法:点到线段两端距离相等。


三角形中线性质定理:
1
、三角形的三条中线都在三角形内。

2、三角形的三条中线长:

ma=(1/2)2b2+2c2 -a2

mb=(1/2)2c2 +2a2 -b

mc=(1/2)2a2 +2b2 -c

(ma,mb,mc分别为角A,B,C所对的中线长)

3、三角形的三条中线交于一点,该点叫做三角形的重心。

4、直角三角形斜边上的中线等于斜边的一半。

5.三角形中线组成的三角形面积等于这个三角形面积的3/4.

定理内容:三角形一条中线两侧所对边平方和等于底边的一半平方与该边中线平方和的2倍。

 

角平分线线定理:
定理1:在角平分线上的任意一点到这个角的两边距离相等。
逆定理:在一个角的内部(包括顶点),且到这个角的两边距离相等的点在这个角的角平分线上。
定理2:三角形一个角的平分线分对边所成的两条线段与这个角的两邻边对应成比例,
如:在△ABC中,BD平分∠ABC,则AD:DC=AB:BC
注:定理2的逆命题也成立。
三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等!(即内心)。

 

垂直平分线的性质:
1.垂直平分线垂直且平分其所在线段。  
2.垂直平分线上任意一点,到线段两端点的距离相等。  
3.三角形三条边的垂直平分线相交于一点,该点叫外心,并且这一点到三个顶点的距离相等。  
垂直平分线的逆定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。


垂直平分线的尺规作法:
方法一:
1、取线段的中点。
2、分别以线段的两个端点为圆心,以大于线段的二分之一长度为半径画弧线。得到一个交点。
3、连接这两个交点。
原理:等腰三角形的高垂直等分底边。
方法二:
1、分别以线段的两个端点为圆心,以大于线段的二分之一长度为半径画弧线,得到两个交点。原理:圆的半径处处相等。
2、连接这两个交点。原理:两点成一线。
垂直平分线的概念:经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线(中垂线)


矩形:
是一种平面图形,矩形的四个角都是直角,同时矩形的对角线相等,而且矩形所在平面内任一点到其两对角线端点的距离的平方和相等。

矩形的性质:
1.矩形的4个内角都是直角;
2.矩形的对角线相等且互相平分;
3.矩形所在平面内任一点到其两对角线端点的距离的平方和相等;
4.矩形既是轴对称图形,也是中心对称图形(对称轴是任何一组对边中点的连线),它至少有两条对称轴。对称中心是对角线的交点。
5.矩形是特殊的平行四边形,矩形具有平行四边形的所有性质
6.顺次连接矩形各边中点得到的四边形是菱形


矩形的判定
①定义:有一个角是直角的平行四边形是矩形
②定理1:有三个角是直角的四边形是矩形
③定理2:对角线相等的平行四边形是矩形
④对角线互相平分且相等的四边形是矩形
矩形的面积:S矩形=长×宽=ab。
黄金矩形:
宽与长的比是(√5-1)/2(约为0.618)的矩形叫做黄金矩形。
黄金矩形给我们一协调、匀称的美感。世界各国许多著名的建筑,为取得最佳的视觉效果,都采用了黄金矩形的设计。如希腊的巴特农神庙等。
梯形的定义:
一组对边平行,另一组对边不平行的四边形叫做梯形。
梯形中平行的两边叫做梯形的底,通常把较短的底叫做上底,较长的底叫做下底,梯形中不平行的两边叫做梯形的腰,梯形的两底的距离叫做梯形的高。
梯形的中位线:
连结梯形两腰的中点的线段。 

梯形性质:
①梯形的上下两底平行;
②梯形的中位线(两腰中点相连的线叫做中位线)平行于两底并且等于上下底和的一半。
③等腰梯形对角线相等。

梯形判定:
1.一组对边平行,另一组对边不平行的四边形是梯形。
2.一组对边平行且不相等的四边形是梯形。

梯形中位线定理:
梯形中位线平行于两底,并且等于两底和的一半。
梯形中位线×高=(上底+下底)×高=梯形面积
梯形中位线到上下底的距离相等
中位线长度=(上底+下底)

梯形的周长与面积
梯形的周长公式:上底+下底+腰+腰,用字母表示:a+b+c+d。
等腰梯形的周长公式:上底+下底+2腰,用字母表示:a+b+2c。
梯形的面积公式:(上底+下底)×高÷2,用字母表示:S=(a+b)×h。
变形1:h=2s÷(a+b);
变形2:a=2s÷h-b;
变形3:b=2s÷h-a。
另一计算梯形的面积公式: 中位线×高,用字母表示:L·h。
对角线互相垂直的梯形面积为:对角线×对角线÷2。


梯形的分类


等腰梯形:两腰相等的梯形。
直角梯形:有一个角是直角的梯形。

等腰梯形的性质:
(1)等腰梯形的同一底边上的两个角相等。
(2)等腰梯形的对角线相等。
(3)等腰梯形是轴对称图形。

等腰梯形的判定:
(1)定义:两腰相等的梯形是等腰梯形
(2)定理:在同一底上的两个角相等的梯形是等腰梯形
(3)对角线相等的梯形是等腰梯形。


发现相似题
与“(1)如图,已知:AD是△ABC中BC边的中线,则S△ABD=S△ACD,依据...”考查相似的试题有: