返回

初中数学

首页
  • 单选题
    已知两圆的半径恰为方程2x2-5x+2=0的两根,圆心距为2
    3
    ,则这两个圆的外公切线有(  )
    A.0条B.1条C.2条D.3条

    本题信息:2005年菏泽数学单选题难度一般 来源:未知
  • 本题答案
    查看答案
本试题 “已知两圆的半径恰为方程2x2-5x+2=0的两根,圆心距为23,则这两个圆的外公切线有( )A.0条B.1条C.2条D.3条” 主要考查您对

一元二次方程根与系数的关系

圆和圆的位置关系(圆和圆的相离,圆与圆的相交,圆与圆的相切)

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 一元二次方程根与系数的关系
  • 圆和圆的位置关系(圆和圆的相离,圆与圆的相交,圆与圆的相切)
一元二次方程根与系数的关系:
如果方程 的两个实数根是那么
也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商。

一元二次方程根与系数关系的推论:
1.如果方程x2+px+q=0的两个根是x1、x2,那么x1+x2=-p , x1`x2=q
2.以两个数x1、x2为根的一元二次方程(二次项系数为1)是x2-(x1+x2)x+x1x2=0
提示:
①运用根与系数的关系和运用根的判别式一样,都必须先把方程化为一般形式,以便正确确定a、b、c的值。
②有推论1可知,对于二次项系数为1的一元二次方程,他的两根之和等于一次项系数的相反数,两根之积等于常数项。
③推论2可以看作推论1的逆定理,利用推论2可以直接求出以两个数x1、x2为根的一元二次方程(二次项系数是1)是x2-(x1+x2)x+x1x2=0


圆和圆的位置关系:
如果两个圆没有公共点,那么就说这两个圆相离,相离分为外离和内含两种。
如果两个圆只有一个公共点,那么就说这两个圆相切,相切分为外切和内切两种。
如果两个圆有两个公共点,那么就说这两个圆相交。

圆心距:两圆圆心的距离叫做两圆的圆心距。

圆和圆位置关系的性质与判定:
设两圆的半径分别为R和r,圆心距为d,那么
两圆外离d>R+r(没有交点)
两圆外切d=R+r (有一个交点,叫切点)
两圆相交R-r<d<R+r(R≥r)(有两个交点)
两圆内切d=R-r(R>r) (有一个交点,叫切点)
两圆内含d<R-r(R>r)(没有交点)

两圆相切的性质:
(1)连心线:两圆圆心的连线。
(2)两圆相切的性质:相切两圆的连心线必过切点,即两圆圆心、切点三点在一条直线上。