返回

高中数学

首页
  • 解答题
    已知x,y∈R.
    (I)若x>0,y>0且
    1
    x
    +
    4
    y
    =1
    ,求x+y的最小值;
    (II)若f(x)=
    1,x≥0
    -1,x<0
    ,求不等式x+(x+2)•f(x+2)≤5的解集.
    本题信息:数学解答题难度较难 来源:未知
  • 本题答案
    查看答案
本试题 “已知x,y∈R.(I)若x>0,y>0且1x+4y=1,求x+y的最小值;(II)若f(x)=1,x≥0-1,x<0,求不等式x+(x+2)•f(x+2)≤5的解集.” 主要考查您对

一元高次(二次以上)不等式

基本不等式及其应用

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 一元高次(二次以上)不等式
  • 基本不等式及其应用

元高次不等式的概念:

含有一个未知数且未知数的最高次数不小于3的不等式叫做一元高次不等式


一元高次不等式的解法:

①解一元高次不等式时,通常需进行因式分解,化为的形式,然后应用区间法化为不等式组或用数轴标根法求解集.
②用数轴标根法求解一元高次不等式的步骤如下:
a.化简:将原不等式化为和它同解的基本型不等式.其中的n个根,它们两两不等,通常情况下,常以的形式出现, 为相同因式的幂指数,它们均为自然数,可以相等;
b.标根:将标在数轴上,将数轴分成(n+1)个区间;
c.求解:若 ,则从最右边区间的右上方开始画一条连续的曲线,依次穿过每一个零点(的根对应的数轴上的点),穿过最左边的零点后,曲线不再改变方向,向左下或左上的方向无限伸展.这样,不等式的解集就直观、清楚地表示在图上,这种方法叫穿针引线法(或数轴标根法);当 不全为l,即f(x)分解因式出现多重因式(即方程f(x)=0出现重根)时,对于奇次重因式对应的根,仍穿轴而过;对于偶次重因式对应的根,则应使曲线与轴相切.简言之,函数f(x)中有重因式时,曲线与轴的关系是"奇穿偶切".


基本不等式:

(当且仅当a=b时取“=”号);
变式:①(当且仅当a=b时取“=”号),即两个正数的算术平均不小于它们的几何平均。
;③;④


对基本不等式的理解:

(1)基本不等式的证明是利用重要不等式推导的,即,即有
(2)基本不等式又称为均值定理、均值不等式等,其中的算术平均数,的几何平均数,本定理也可叙述为:两个正数的算术平均数不小于它们的几何平均数.
(3)要特别注意不等式成立的条件和等号成立的条件.均值不等式中:①当a=b时取等号,即


对于两个正数x,y,若已知xy,x+y,中的某一个为定值,可求出其余各个的最值:
如:(1)当xy=P(定值),那么当x=y时,和x+y有最小值2
(2)x+y=S(定值),那么当x=y时,积xy有最大值
(3)已知x2+y2=p,则x+y有最大值为

应用基本的不等式解题时:

注意创设一个应用基本不等式的情境及使等号成立的条件,即“一正、二定、三相等”。

利用基本不等式比较实数大小:

(1)注意均值不等式的前提条件.
(2)通过加减项的方法配凑成使用均值定理的形式.
(3)注意“1”的代换.
(4)灵活变换基本不等式的形式,并注重其变形形式的运用.重要不等式的形式可以是,也可以是,还可以是等,不仅要掌握原来的形式,还要掌握它的几种变形形式以及公式的逆用等,以便应用.
(5)合理配组,反复应用均值不等式。 


基本不等式的几种变形公式: