返回

初中数学

首页
  • 单选题
    下列叙述中,正确的有(  )
    ①如果2x=a,2y=b,那么2x-y=a-b;
    ②满足条件(
    4
    3
    )2n=(
    3
    4
    )n-3
    的n不存在;
    ③任意一个三角形的三条高所在的直线相交于一点,且这点一定在三角形的内部;
    ④△ABC中,若∠A+∠B=2∠C,∠A-∠C=40°,则这个△ABC为钝角三角形.
    A.0个B.1个C.2个D.3个

    本题信息:数学单选题难度一般 来源:未知
  • 本题答案
    查看答案
本试题 “下列叙述中,正确的有( )①如果2x=a,2y=b,那么2x-y=a-b;②满足条件(43)2n=(34)n-3的n不存在;③任意一个三角形的三条高所在的直线相交于一点,且这点一定在...” 主要考查您对

有理数的乘方

零指数幂(负指数幂和指数为1)

三角形的中线,角平分线,高线,垂直平分线

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 有理数的乘方
  • 零指数幂(负指数幂和指数为1)
  • 三角形的中线,角平分线,高线,垂直平分线
有理数乘方的定义:
求n个相同因数的积的运算叫做乘方,乘方的结果叫做幂。在an中,a叫做底数,n叫做指数。
22、73也可以看做是乘方运算的结果,这时它们表示数,分别读作“2的2次幂”、“7的3次幂”,其中2、7叫做底数,6、3叫做指数。
①习惯上把22叫做2的平方,把23叫做2的立方;
②当底数是负数或分数时,要先用括号将底数括上,再在其右上角写指数,指数要写得小些。
乘方的性质:
乘方是乘法的特例,其性质如下:
(1)正数的任何次幂都是正数;
(2)负数的偶次幂是正数,负数的奇次幂是负数;
(3)0的任何(除0以外)次幂都是0;
(4)a2是一个非负数,即a2≥0。
有理数乘方法则:
①负数的奇次幂是负数,负数的偶次幂是正数。例如:(-2)3=-8,(-2)2=4
②正数的任何次幂都是正数,0的任何正整数次幂都是0.例如:22=4,23=8,03=0

点拨:
①0的次幂没意义;
②任何有理数的偶次幂都是非负数;
③由于乘方是乘法的特例,因此有理数的乘方运算可以用有理数的乘法运算完成;
④负数的乘方与乘方的相反数不同。
乘方示意图:

零指数幂定义:任何不等于零的数的零次幂都等于1。
负指数幂的定义:任何不等于零的数的-n(n为正整数)次幂,等于这个数的n次幂的倒数。
指数为1:任何不等于零的数的1次幂,所得结果都等于这个数的本身。
三角形的中线:
在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。由于三角形有三条边,所以一个三角形有三条中线。且三条中线交于一点。这点称为三角形的重心。
每条三角形中线分得的两个三角形面积相等。
角平分线:
三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线。
三角形的角平分线不是角的平分线,是线段。角的平分线是射线。
高线:
从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。
线段的垂直平分线:
经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线。

注意:要证明一条线为一个线段的垂直平分线,应证明两个点到这条线段的距离相等且这两个点都在要求证的直线上才可以证明
巧计方法:点到线段两端距离相等。


三角形中线性质定理:
1
、三角形的三条中线都在三角形内。

2、三角形的三条中线长:

ma=(1/2)2b2+2c2 -a2

mb=(1/2)2c2 +2a2 -b

mc=(1/2)2a2 +2b2 -c

(ma,mb,mc分别为角A,B,C所对的中线长)

3、三角形的三条中线交于一点,该点叫做三角形的重心。

4、直角三角形斜边上的中线等于斜边的一半。

5.三角形中线组成的三角形面积等于这个三角形面积的3/4.

定理内容:三角形一条中线两侧所对边平方和等于底边的一半平方与该边中线平方和的2倍。

 

角平分线线定理:
定理1:在角平分线上的任意一点到这个角的两边距离相等。
逆定理:在一个角的内部(包括顶点),且到这个角的两边距离相等的点在这个角的角平分线上。
定理2:三角形一个角的平分线分对边所成的两条线段与这个角的两邻边对应成比例,
如:在△ABC中,BD平分∠ABC,则AD:DC=AB:BC
注:定理2的逆命题也成立。
三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等!(即内心)。

 

垂直平分线的性质:
1.垂直平分线垂直且平分其所在线段。  
2.垂直平分线上任意一点,到线段两端点的距离相等。  
3.三角形三条边的垂直平分线相交于一点,该点叫外心,并且这一点到三个顶点的距离相等。  
垂直平分线的逆定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。


垂直平分线的尺规作法:
方法一:
1、取线段的中点。
2、分别以线段的两个端点为圆心,以大于线段的二分之一长度为半径画弧线。得到一个交点。
3、连接这两个交点。
原理:等腰三角形的高垂直等分底边。
方法二:
1、分别以线段的两个端点为圆心,以大于线段的二分之一长度为半径画弧线,得到两个交点。原理:圆的半径处处相等。
2、连接这两个交点。原理:两点成一线。
垂直平分线的概念:经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线(中垂线)