返回

初中数学

首页
  • 解答题
    某学校为了了解该校初三学生毕业考试数学成绩,在这个年级中抽取了部分学生的数学成绩进行统计分析,将所得成绩(成绩均为整
    魔方格
    数)整理后,按成绩从低到高分成5组,绘制了如图所示的频率分布直方图.已知成绩按从低到高的5个小组的频率之比为1~2~3~4~2,且第5小组的频数为10.
    (1)将频率分布直方图补充完整;
    (2)求这次统计分析的样本容量;
    (3)若90分以上为优生,请估计该校这次毕业考试数学科的优生率(精确到0.01).
    本题信息:2005年眉山数学解答题难度一般 来源:未知
  • 本题答案
    查看答案
本试题 “某学校为了了解该校初三学生毕业考试数学成绩,在这个年级中抽取了部分学生的数学成绩进行统计分析,将所得成绩(成绩均为整数)整理后,按成绩从低到高分成5...” 主要考查您对

频数与频率

总体、个体、样本、样本容量

用样本估算总体

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 频数与频率
  • 总体、个体、样本、样本容量
  • 用样本估算总体
频数:一般我们称落在不同小组中的数据个数为该组的频数。
频率:频数与数据总数的比值为频率。频率反映了各组频数的大小在总数中所占的分量。

频数
在一组依大小顺序排列的测量值中,当按一定的组距将其分组时出现在各组内的测量值的数目。
如有一组测量数据,数据的总个数N=148最小的测量值xmin=0.03,最大的测量值xmax=31.67,按组距为△x=3.000将148个数据分为11组,其中分布在15.05~18.05范围内的数据有26个,则称该数据组的频数为26。

频率
如在314159265358979324中,‘9’出现的频数是3,出现的频率是3/18=16.7%
频数也称“次数”,对总数据按某种标准进行分组,统计出各个组内含个体的个数。而频率则每个小组的频数与数据总数的比值。
在变量分配数列中,频数(频率)表明对应组标志值的作用程度。
频数(频率)数值越大表明该组标志值对于总体水平所起的作用也越大,反之,频数(频率)数值越小,表明该组标志值对于总体水平所起的作用越小。


掌握总体、个体、样本,样本容量的概念,能正确区分总体、个体、样本、样本容量
总体、个体、样本、样本容量,这四个概念之间其实有其内在联系,
总体:我们把所要考察的对象的全体叫做总体;
个体:把组成总体的每一个考察对象叫做个体;
样本:从总体中取出的一部分个体叫做这个总体的一个样本;
样本容量:一个样本包含的个体的数量叫做这个样本的容量。
我们在区分这四个概念时,首先找出考察的对象,从而找出总体、个体,再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量。
用样本估计总体的两个手段:
(1)用样本的频率分布估计总体的分布;
(2)用样本的数字特征估计总体的数字特征,需要从总体中抽取一个质量较高的样本,才能不会产生较大的估计偏差,且样本的容量越大,估计的结果也就越精确。
发现相似题
与“某学校为了了解该校初三学生毕业考试数学成绩,在这个年级中...”考查相似的试题有: