学习目标:
理解并探索运算中蕴含的规律,并应用规律解决问题。
和的变化规律
(一)如果一个加数增加一个数,另一个加数不变,那么它们的和也增加同一个数。
(二)如果一个加数减少一个数,另一个加数不变,那么,它们的和也减少同一个数.
(三)如果一个加数增加一个数,另一个加数减少同样的加数,那么,它们的和不变.
(四)如果一个加数增加一个数m,另一个加数增加一个数n,那么,它们的和就增加(m+n).
(五)如果一个加数减少一个数m,另一个加数减少一个数n,那么,它们的和就减少(m+n).
(六)如果一个加数增加一个数m,另一个加数减少一个数n,当m>n时,它们的和就增加(m-n);当m<n时,它们的和就减少(n-m).
差的变化规律
(一)如果被减数增加或减少一个数,减数不变,那么它们的差也增加或减少同一个数.
(二)如果减数增加或减少一个数,被减数不变,那么,它们的差就减少或增加同一个数.
(三)如果被减数和减数同时增加或减少同一个数,那么,它们的差相等.
(四)如果被减数增加一个数m,减数减少一个数n,那么,它们的差就增加(m+n).
(五)如果被减数减少一个数m,减数增加一个数n,那么,它们的差就减少(m+n)
(六)如果被减数增加一个数m,减数增加一个数n,那么,当m>n时,它们的差就增加(m+n);当m<n时,它们的差就减少(n-m).
(七)如果被减数减少一个数m,减数减少一个数n,那么,当m>n时,它们的差要减少(m-n);当m<n时,它们的差要增加(n-m).
积的变化规律
(一)如果一个因数扩大m倍,另一个因数不变,那么,它们的积也扩大m倍.
(二)如果一个因数缩小m倍,另一个因数不变,那么,它们的积也缩小m倍.
(三)如果一个因数扩大m倍,另一个因数缩小相同的倍数,那么它们的积不变.
(四)如果一个因数扩大m倍,另一个因数扩大n倍,那么,它们的积扩大(m×n)倍.
(五)如果一个因数缩小m倍,另一个因数缩小n倍,那么,它们的积就缩小(m×n)倍.
(六)如果一个因数扩大m倍,另一个因数缩小n倍,那么,当m>n时它们的积扩大(m÷n)倍,当m<n时,它们的积就缩小(n÷m)倍.
商的变化规律
(一)如果被除数和除数同时扩大或缩小相同的倍数,那么,它们的商不变.
(二)如果被除数扩大(或缩小)m倍,除数不变,那么,它们的商就扩大(或缩小)m倍.
(三)如果除数扩大或缩小m倍,被除数不变,那么,它们的商反而缩小或扩大m倍.
(四)如果被除数扩大m倍,除数缩小n倍,那么,它们的商就扩大(m×n)倍.
(五)如果被除数缩小m倍,除数扩大n倍,那么,它们的商就缩小(m×n)倍.
(六)如果被除数扩大m倍,除数扩大n倍,当m>n时,它们的商就扩大(m÷n)倍,当m<n时,它们的商就缩小(n÷m)倍.
(七)如果被除数缩小m倍,除数缩小n倍,当m>n时,它们的商就缩小(m÷n)倍,当m<n时,它们的商就扩大(n÷m)倍.
倒数定义:
乘积是1的两个数叫做互为倒数。
求法:
1.求一个分数的倒数,例如3/4,我们只须把3/4这个分数的分子和分母交换位置,即得3/4的倒数为4/3。
2.求一个整数的倒数,只须把这个整数看成是分母为1的分数,然后再按求分数倒数的方法即可得到。
如12,即12/1,再把12/1这个分数的分子和分母交换位置,把分子做分母,分母做分子,则有1/12。 即12倒数是1/12。
说明:倒数是本身的数是1和-1。(0没有倒数)
倒数的特点:一个正实数(1除外)加上它的倒数一定大于2。