返回

小学六年级数学

首页
  • 判断题
    数学门诊部。(对的打“√”,错的打 “×”)
    (l)a- (b-c) = a-b-c
    [     ]

    (2)a2= a×a
    [     ]

    (3)所有的等式都是方程,所有的方程都是等式。
    [     ]

    (4)小刚今年a岁,爸爸今年(a+b)岁,5年后,爸爸比小刚大(b+5)岁。
    [     ]

    本题信息:2009年陕西省同步题数学判断题难度一般 来源:张思媛
  • 本题答案
    查看答案
本试题 “数学门诊部。(对的打“√”,错的打 “×”)(l)a- (b-c) = a-b-c[ ](2)a2= a×a[ ](3)所有的等式都是方程,所有的方程都是等式。[ ](4)小刚今年a岁,爸...” 主要考查您对

运算定律和简便算法

用字母表示数

方程的定义,等式的性质

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 运算定律和简便算法
  • 用字母表示数
  • 方程的定义,等式的性质
学习目标:
1、掌握运算定律,并能运用运算定律和性质进行正确、合理、灵活的计算。
2、养成良好审题习惯,提高计算能力。
运算定律:
名称 内容 字母表示 用数举例
加法交换律 两个数相加,交换加数的位置,和不变。 a+b=b+a 25+14=14+25
加法结合律 三个数相加,先把前两数相加,再同第三个数相加,
或者先把后两数相加,再同第一个数相加,它们的和不变。
a+b+c=
a+(b+c)
20+14+36=
20+(14+36)
乘法交换律 两个数相乘,交换因数的位置,它们的积不变。 a×b=b×a 10×12=12×10
乘法结合律 三个数相乘,先把前两个数相乘,再同第三个数相乘,
或者先把后两个数相乘,再同第一个数相乘,它们的积不变。
a×b×c=
a×(b×c)
12×25×4=
12×(25×4)
乘法分配律 两个数的和同一个数相乘,可以把两个加数分别和这个
数相乘,再把两个积相加,结果不变。
(a+b)×c=
a×c+b×c
(12+15)×4=
12×4+15×4

运算性质:

名称

内容

字母表示

用数举例

减法的性质 一个数连续减去几个数等于一个数减去这几个数的和 a-b-b=
a-(b+c)
250-18-52=
250-(18+52)
除法的性质 一个数连续除以几个数(0除外)等于一个数除以这几个数的积 a÷b÷c=
a÷(b×c)
180÷4÷25=
180÷(4×25)

用字母表示数:
含有字母的式子不仅可以表示数量关系,也可以表示数量。还可以简明、概括地表达运算定律和计算公式,方便研究和解决实际问题。
①含有字母的式子中,数字和字母、字母和字母相乘时,乘号可以记作“·”,也可以省略不写。
②在省略乘号的时候,应当把数字写在字母的前面。
③当“1”和任何字母相乘时,“1”可以省略不写。
④由于字母可以表示任何数,在一些式中,对字母表示数的要运行说明,如: (a≠0)。
⑤因为字母表示的是数,所以在式子中每一个字母都不注明单位名称,计算结果也不注明单位名称,只在答句中写上单位名称。

用字母表示数的意义:

有助于揭示概念的本质特征,能使数量之间的关系更加简明,更具有普遍意义。使思维过程简约化,易于形成概念系统。
等式:
含有等号的式子叫做等式(数学术语)。形式:把相等的两个数(或字母表示的数)用“=”连接起来。
方程:
含有未知数的等式叫做方程。即:
1.方程中一定有一个或一个以上含有未知数的代数式;
2.方程式是等式,但等式不一定是方程。

等式基本性质
性质1
等式两边同时加上(或减去)同一个整式,等式的值不变。
若a=b
那么a+c=b+c

性质2
等式两边同时乘或除以同一个不为0的整式,等式的值不变。
若a=b
那么有a·c=b·c
或a÷c=b÷c (c≠0)

性质3
等式具有传递性。
若a1=a2,a2=a3,a3=a4,……an=an,那么a1=a2=a3=a4=……=an