本试题 “在直角坐标系中:(1)描出下列各点,并将这些点用线段依次连接起来,(-5,0),(-5,4)(-8,7),(-5,6),(-2,8),(-5,4);(2)把(1)中的图...” 主要考查您对平面直角坐标系
平移
等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
特殊位置的点的坐标的特点:
1.x轴上的点的纵坐标为零;y轴上的点的横坐标为零。
2.第一、三象限角平分线上的点横、纵坐标相等;第二、四象限角平分线上的点横、纵坐标互为相反数。
3.在任意的两点中,如果两点的横坐标相同,则两点的连线平行于纵轴;如果两点的纵坐标相同,则两点的连线平行于横轴。
4.点到轴及原点的距离
点到x轴的距离为|y|; 点到y轴的距离为|x|;点到原点的距离为x的平方加y的平方的平方根;
对称点:
1.关于x轴成轴对称的点的坐标,横坐标相同,纵坐标互为相反数。(横同纵反)
2.关于y轴成轴对称的点的坐标,纵坐标相同,横坐标互为相反数。(横反纵同)
3.关于原点成中心对称的点的坐标,横坐标与横坐标互为相反数,纵坐标与纵坐标互为相反数。(横纵皆反)
点的符号:
横坐标 纵坐标
第一象限:(+,+)正正
第二象限:(-,+)负正
第三象限:(-,-)负负
第四象限:(+,-)正负
x轴正半轴:(+,0)
x轴负半轴:(-,0)
y轴正半轴:(0,+)
y轴负半轴: (0,-)
x轴上的点的纵坐标为0,y轴上的点的横坐标为0。
原点:(0,0)
注:以数对形式(x,y)表示的坐标系中的点(如2,-4),“2”是x轴坐标,“-4”是y轴坐标。
其他公式:
1.坐标平面内的点与有序实数对一一对应。
2. 一三象限角平分线上的点横纵坐标相等。
3.二四象限角平分线上的点横纵坐标互为相反数。
4.一点上下平移,横坐标不变,即平行于y轴的直线上的点横坐标相同。
5.y轴上的点,横坐标都为0。
6.x轴上的点,纵坐标都为0。
7.坐标轴上的点不属于任何象限。
8.一个关于x轴对称的点横坐标不变,纵坐标变为原坐标的相反数。反之同样成立。
9.一个关于原点对称的点横纵坐标均为原坐标相反数。
10.与x轴做轴对称变换时,x不变,y变
11.与y轴做轴对称变换时,y不变,x变
12.与原点做轴对称变换时,y与x都变
平移基本性质:
经过平移,对应线段平行(或共线)且相等,对应角相等,对应点所连接的线段平行且相等;
平移变换不改变图形的形状、大小和方向(平移前后的两个图形是全等形)。
(1)图形平移前后的形状和大小没有变化,只是位置发生变化;
(2)图形平移后,对应点连成的线段平行(或在同一直线上)且相等
(3)多次连续平移相当于一次平移。
(4)偶数次对称后的图形等于平移后的图形。
(5)平移是由方向和距离决定的。
这种将图形上的所有点都按照某个方向作相同距离的位置移动,叫做图形的平移运动,简称为平移
平移的条件:确定一个平移运动的条件是平移的方向和距离。
平移的三个要点
1 原来的图形的形状和大小和平移后的图形是全等的。
2 平移的方向。(东南西北,上下左右,东偏南n度,东偏北n度,西偏南n度,西偏北n度)
3 平移的距离。(长度,如7厘米,8毫米等)
平移作用:
1.通过简单的平移可以构造精美的图形。也就是花边,通常用于装饰,过程就是复制-平移-粘贴。
2.平移长于平行线有关,平移可以将一个角,一条线段,一个图形平移到另一个位置,是分散的条件集中到一个图形上,使问题得到解决。
与“在直角坐标系中:(1)描出下列各点,并将这些点用线段依次连...”考查相似的试题有: