返回

初中数学

首页
  • 解答题
    △ABC中,∠ACB=90°,AD是角平分线,CH是高,AD、CH交于点E,DF垂直于BC,垂足为F.求证:四边形CEFD是菱形.
    魔方格

    本题信息:数学解答题难度一般 来源:未知
  • 本题答案
    查看答案
本试题 “△ABC中,∠ACB=90°,AD是角平分线,CH是高,AD、CH交于点E,DF垂直于BC,垂足为F.求证:四边形CEFD是菱形.” 主要考查您对

菱形,菱形的性质,菱形的判定

角平分线的性质

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 菱形,菱形的性质,菱形的判定
  • 角平分线的性质
菱形的定义:
在一个平面内,有一组邻边相等的平行四边形是菱形。

菱形的性质:
①菱形具有平行四边形的一切性质;
②菱形的对角线互相垂直且平分,并且每一条对角线平分一组对角;
③菱形的四条边都相等;
④菱形既是轴对称图形(两条对称轴分别是其两条对角线所在的直线),也是中心对称图形(对称中心是其重心,即两对角线的交点);
⑤在有一个角是60°角的菱形中,较短的对角线等于边长,较长的对角线是较短的对角线的根号3倍。


菱形的判定:
在同一平面内,
(1)定义:有一组邻边相等的平行四边形是菱形
(2)定理1:四边都相等的四边形是菱形
(3)定理2:对角线互相垂直的平行四边形是菱形
菱形是在平行四边形的前提下定义的,首先它是平行四边形,而且是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而增加了一些特殊的性质和判定方法。
菱形的面积:S菱形=底边长×高=两条对角线乘积的一半。


角平分线:
三角形的一个角的平分线与这个角的对边相交,连结这个角的顶点和与对边交点的线段叫做三角形的角平分线(也叫三角形的内角平分线)。由定义可知,三角形的角平分线是一条线段。由于三角形有三个内角,所以三角形有三条角平分线。三角形的角平分线交点一定在三角形内部。


角平方线定理:
①角平分线上的任意一点,到角两边的距离相等。垂直于两边为最短距离。
②角平分线能得到相同的两个角,都等于该角的一半。
③三角形三条角平分线相交于一点,并且这一点到三边的距离相等。
④三角形的三个角的角平分线相交于一点,这个点称为内心 ,即以此点为圆心可以在三角形内部画一个内切圆。
逆定理:
在角的内部,到角两边的距离相等的点在角平分线上。


角平分线作法:
在角AOB中,画角平分线

方法一:
1.以点O为圆心,以任意长为半径画弧,两弧交角AOB两边于点M,N。
2.分别以点M,N为圆心,以大于1/2MN的长度为半径画弧,两弧交于点P。
3.作射线OP。
则射线OP为角AOB的角平分线。
当然,角平分线的作法有很多种。下面再提供一种尺规作图的方法供参考。

方法二:
1.在两边OA、OB上分别截取OM、OA和ON、OB,且使得OM=ON,OA=OB;
2.连接AN与BM,他们相交于点P;
3.作射线OP。
则射线OP为角AOB的角平分线。
发现相似题
与“△ABC中,∠ACB=90°,AD是角平分线,CH是高,AD、CH交于点E,DF...”考查相似的试题有: