返回

初中一年级数学

首页
  • 填空题
    如图,∵AB∥CD (已知)
    ∴∠ABC=(         )(                 )
    (      )=(     )(两直线平行, 内错角相等 )
    ∠BCD+(      )=180(                                   )
    请你写出三个使AD∥BC的条件,并写出理由。
    (                                     )
    (                                  )
    (                                   )

    本题信息:2008年期中题数学填空题难度极难 来源:周梅
  • 本题答案
    查看答案
本试题 “如图,∵AB∥CD (已知)∴∠ABC=( )( )( )=( )(两直线平行, 内错角相等 )∠BCD+( )=180。( )请你写出三个使AD∥BC的条件,并写出理由。( )( )( )” 主要考查您对

平行线的性质,平行线的公理

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 平行线的性质,平行线的公理

平行公理:过直线外一点有且只有一条直线与已知直线平行。
推论(平行线的传递性):平行同一直线的两直线平行。
∵a∥c,c ∥b
∴a∥b。

平行线的性质:
1. 两条平行被第三条直线所截,同位角相等。
简单说成:两直线平行,同位角相等。
2. 两条平行线被第三条直线所截,内错角相等。
简单说成:两直线平行,内错角相等。
3 . 两条平行线被第三条直线所截,同旁内角互补。
简单说成:两直线平行,同旁内角互补。


平行线的性质公理注意:
①注意条件“经过直线外一点”,若经过直线上一点作已知直线的平行线,就与已知直线重合了;
②平行公理体现了平行线的存在性和唯一性;
③平行公理的推论体现了平行线的传递性。
④在两直线平行的前提下才存在同位角相等、内错角相等、同旁内角互补的结论。这是平行线特有的性质。不要一提同位角或内错角就认为他们相等,一提同旁内角就认为互补,若没有两直线平行的条件,他们是不成立的。