本试题 “如图,l1∥l2,l3与l1、l2相交于C、D二点,点P在l3上,在图(1)、(2)、(3)中分别探究∠PAC、∠APB、∠PBD三者间关系,并证明.” 主要考查您对平行线的性质,平行线的公理
等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
平行公理:过直线外一点有且只有一条直线与已知直线平行。
推论(平行线的传递性):平行同一直线的两直线平行。
∵a∥c,c ∥b
∴a∥b。
平行线的性质:
1. 两条平行被第三条直线所截,同位角相等。
简单说成:两直线平行,同位角相等。
2. 两条平行线被第三条直线所截,内错角相等。
简单说成:两直线平行,内错角相等。
3 . 两条平行线被第三条直线所截,同旁内角互补。
简单说成:两直线平行,同旁内角互补。
与“如图,l1∥l2,l3与l1、l2相交于C、D二点,点P在l3上,在图(1...”考查相似的试题有: