返回

初中三年级数学

首页
  • 解答题
    如图,已知矩形的边长.在某一时刻,动点从点出发沿方向以的速度向点匀速运动;同时,动点从点出发沿方向以的速度向点匀速运动,
    问:(1)经过多长时间,的面积等于矩形面积的
    (2)是否存在时刻,使以为顶点的三角形与相似?若存在,请求出的值;若不存在,请说明理由.

    本题信息:2012年河北省期中题数学解答题难度较难 来源:郭峰禄
  • 本题答案
    查看答案
本试题 “如图,已知矩形的边长.在某一时刻,动点从点出发沿方向以的速度向点匀速运动;同时,动点从点出发沿方向以的速度向点匀速运动,问:(1)经过多长时间,的面...” 主要考查您对

一元二次方程的应用

相似三角形的判定

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 一元二次方程的应用
  • 相似三角形的判定
建立一元二次方程模型进行求解,把得到的答案带回实际问题中检验是否合理,来解决实际问题,如打折、营销、增长率问题等。

列一元二次次方程组解应用题的一般步骤:
可概括为“审、设、列、解、答”五步,即:
(1)审:是指读懂题意,弄清题意,明确哪些是已知量,哪些是未知量以及它们之间的关系;
(2)设:是指设未知数;
(3)列:就是列方程,这是非常重要的一步,一般先找出能够表达应用题全部含义的一个等量关系,然后列代数式表示等量关系中的各个量,就得到含有未知数的等式,即方程;
(4)解:解这个方程,求出两个未知数的值;
(5)答:在对求出的方程的解做出是否合理判断的基础上,写出答案。
提示:
①列方程解应用题时,要善于将普通语言化为数学语言,审题时,要特别注意关键词语,如“多、少、快、慢、和、差、倍、分、超过、剩余、增加、减少”等等,此外,还要掌握一些常用的公式或特殊的等量关系,如特殊图形的面积公式、行程问题、工程问题、增长率问题中的一些特殊关系等。
②注重解法选择与验根,在具体问题中要注意恰当的选择解法,以保证解题过程简单流畅,特别注意要对方程的解进行检验,根据实际情况作出正确取舍,以保证结论的准确性。

常见题型公式:
工程问题:    
工程问题中的三个量及其关系为:工作总量=工作效率×工作时间  
经常在题目中未给出工作总量时,设工作总量为单位1。

利润赢亏问题 
销售问题中常出现的量有:进价、售价、标价、利润等 
有关关系式:
商品利润=商品售价—商品进价=商品标价×折扣率—商品进价 
商品利润率=商品利润/商品进价            
商品售价=商品标价×折扣率 

存款利率问题:
利息=本金×利率×期数      
本息和=本金+利息      
利息税=利息×税率(20%)

行程问题:
基本数量关系:路程=速度×时间,时间=路程÷速度,速度=路程÷时间,
路程=速度×时间。
①相遇问题:快行距+慢行距=原距;
②追及问题:快行距-慢行距=原距;
③航行问题:顺水(风)速度=静水(风)速度+水流(风)速度,
逆水(风)速度=静水(风)速度-水流(风)速度


相似三角形:
对应角相等,对应边成比例的两个三角形叫做相似三角形。
互为相似形的三角形叫做相似三角形。

例如图中,若B'C'//BC,那么角B=角B',角BAC=角B'A'C',是对顶角,那么我们就说△ABC∽△AB'C'

相似三角形的判定:
1.基本判定定理
(1)平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似。
(2)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。(简叙为:两边对应成比例且夹角相等,两个三角形相似。)
(3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似。(简叙为:三边对应成比例,两个三角形相似。)
(4)如果两个三角形的两个角分别对应相等(或三个角分别对应相等),那么这两个三角形相似。
2.直角三角形判定定理
(1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似。
(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。
3.一定相似:
(1).两个全等的三角形
(全等三角形是特殊的相似三角形,相似比为1:1)
(2).两个等腰三角形
(两个等腰三角形,如果其中的任意一个顶角或底角相等,那么这两个等腰三角形相似。)
(3).两个等边三角形
(两个等边三角形,三个内角都是60度,且边边相等,所以相似) 
(4).直角三角形中由斜边的高形成的三个三角形。


相似三角形判定方法:
证两个相似三角形应该把表示对应顶点的字母写在对应的位置上。如果是文字语言的“△ABC与△DEF相似”,那么就说明这两个三角形的对应顶点可能没有写在对应的位置上,而如果是符号语言的“△ABC∽△DEF”,那么就说明这两个三角形的对应顶点写在了对应的位置上。
一、(预备定理)
平行于三角形一边的直线截其它两边所在的直线,截得的三角形与原三角形相似。(这是相似三角形判定的定理,是以下判定方法证明的基础。这个引理的证明方法需要平行线与线段成比例的证明)
二、如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
三、如果两个三角形的两组对应边成比例,并且相应的夹角相等,那么这两个三角形相似。 
四、如果两个三角形的三组对应边成比例,那么这两个三角形相似
五(定义)
对应角相等,对应边成比例的两个三角形叫做相似三角形
六、两三角形三边对应垂直,则两三角形相似。
七、两个直角三角形中,斜边与直角边对应成比例,那么两三角形相似。
八、由角度比转化为线段比:h1/h2=Sabc

易失误
比值是一个具体的数字如:AB/EF=2
而比不是一个具体的数字如:AB/EF=2:1