本试题 “某高级中学共有学生3000名,各年级男、女生人数如下表:已知在全校学生中随机抽取1名,抽到高二年级女生的概率是0.18.(I)问高二年级有多少名女生?(II)...” 主要考查您对分层抽样
古典概型的定义及计算
等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
分层抽样:
当已知总体由差异明显的几部分组成时,常将总体分成几部分,然后按照各部分所占的比例进行抽样,这种抽样叫做分层抽样,其所分成的各个部分叫做层。
利用分层抽样抽取样本,每一层按照它在总体中所占的比例进行抽取。
不放回抽样和放回抽样:
在抽样中,如果每次抽出个体后不再将它放回总体,称这样的抽样为不放回抽样;如果每次抽出个体后再将它放回总体,称这样的抽样为放回抽样.
随机抽样、系统抽样、分层抽样都是不放回抽样
分层抽样的特点:
(1)分层抽样适用于差异明显的几部分组成的情况;
(2)在每一层进行抽样时,在采用简单随机抽样或系统抽样;
(3)分层抽样充分利用已掌握的信息,使样具有良好的代表性;
(4)分层抽样也是等概率抽样,而且在每层抽样时,可以根据具体情况采用不同的抽样方法,因此应用较为广泛。
常用的抽样方法及它们之间的联系和区别:
类别 | 共同点 | 各自特点 | 相互联系 | 适用范围 |
简单随机抽样 | 抽样过程中每个个体被抽取的概率是相同的 | 从总体中逐个抽取 | 总体中的个体个数少 | |
系统抽样 | 将总体均匀分成几个部分,按照事先确定的规则在各部分抽取 | 在起始部分抽样时采用简单随机抽样 | 总体中的个体个数多 | |
分层抽样 | 将总体分成几层,分层进行抽取 | 各层抽样时采用简单抽样或者相同抽样 | 总体由差异明显的几部分组成 |
基本事件的定义:
一次试验连同其中可能出现的每一个结果称为一个基本事件。
等可能基本事件:
若在一次试验中,每个基本事件发生的可能性都相同,则称这些基本事件为等可能基本事件。
古典概型:
如果一个随机试验满足:(1)试验中所有可能出现的基本事件只有有限个;
(2)每个基本事件的发生都是等可能的;
那么,我们称这个随机试验的概率模型为古典概型.
古典概型的概率:
如果一次试验的等可能事件有n个,那么,每个等可能基本事件发生的概率都是;如果某个事件A包含了其中m个等可能基本事件,那么事件A发生的概率为
。
古典概型解题步骤:
(1)阅读题目,搜集信息;
(2)判断是否是等可能事件,并用字母表示事件;
(3)求出基本事件总数n和事件A所包含的结果数m;
(4)用公式求出概率并下结论。
求古典概型的概率的关键:
求古典概型的概率的关键是如何确定基本事件总数及事件A包含的基本事件的个数。
与“某高级中学共有学生3000名,各年级男、女生人数如下表:已知...”考查相似的试题有: