返回

初中二年级数学

首页
  • 单选题
    下列各式中,正确的是(   )
    A.-=-(-7)=7
    B.=
    C.=2+=
    D.=±0.5

    本题信息:2011年专项题数学单选题难度一般 来源:周梅
  • 本题答案
    查看答案
本试题 “下列各式中,正确的是( )A.-=-(-7)=7B.=C.=2+=D.=±0.5” 主要考查您对

平方根

二次根式的加减乘除混合运算,二次根式的化简

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 平方根
  • 二次根式的加减乘除混合运算,二次根式的化简
平方根定义:
如果一个数的平方等于a,则这个数叫做a的平方根,如果x2=a,那么x叫做a的平方根,这里a是x的平方,它是一个非负数,即a≥0。
表示:一个正数有两个平方根,用表示平方根中正的那个,用-表示负的平方根。

性质:
①一个正数如果有平方根,那么必定有两个,它们互为相反数。
显然,如果我们知道了这两个平方根的一个,那么就可以及时的根据相反数的概念得到它的另一个平方根。

②如果一个正数x的平方等于a,即x的平方等于a,那么这个正数x叫做a的算术平方根。a
的算术平方根记为,读作“根号a”,a叫做被开方数。

③规定:0的平方根是0。

④负数在实数范围内不能开平方,只有在复数范围内,才可以开平方根。
例如:-1的平方根为±1,-9的平方根为±3。

⑤平方根包含了算术平方根,算术平方根是平方根中的一种。
平方根和算术平方根都只有非负数才有。
被开方数是乘方运算里的幂。
求平方根可通过逆运算平方来求。
开平方:求一个非负数a的平方根的运算叫做开平方,其中a叫做被开方数。
若x的平方等于a,那么x就叫做a的平方根,即正负根号a=正负x


1 至 20 的平方根:
利用长式除法可以求平方根。长式除法需要进行加法,减法,乘法,除法等四则运算。一般计算机软件的运算精度小于20位数字,如要计算平方根到100位,四则运算的精度需100位以上。 利用高精度长式除法可以计算出 1 至 20 的 平方根如下:
=1
≈1.414213562373095048801688724209698078569671875376948073176679737990732478462
≈1.732050807568877293527446341505872366942805253810380628055806979451933016909
=2
≈2.236067977499789696409173668731276235440618359611525724270897245410520925638
≈2.449489742783178098197284074705891391965947480656670128432692567250960377457
≈2.645751311064590590501615753639260425710259183082450180368334459201068823230
≈2.828427124746190097603377448419396157139343750753896146353359475981464956924
=3
≈3.162277660168379331998893544432718533719555139325216826857504852792594438639
≈3.316624790355399849114932736670686683927088545589353597058682146116484642609
≈3.464101615137754587054892683011744733885610507620761256111613958903866033818
≈3.605551275463989293119221267470495946251296573845246212710453056227166948293
≈3.741657386773941385583748732316549301756019807778726946303745467320035156307
≈3.872983346207416885179265399782399610832921705291590826587573766113483091937
≈4
≈4.123105625617660549821409855974077025147199225373620434398633573094954346338
≈4.242640687119285146405066172629094235709015626130844219530039213972197435386
≈4.358898943540673552236981983859615659137003925232444936890344138159557328203
≈4.472135954999579392818347337462552470881236719223051448541794490821041851276

其中,有两数的根号可借由“口诀”记忆: (意思意思而已), (一妻三儿、一起散热)。
二次根式的加减乘除混合运算:
顺序与师叔运算的顺序一样,先乘方,后乘除,最后算加减,有括号的先算括号内的。
①在运算过程中,多项式乘法,乘法公式和有理数(式)中的运算律在二次根式的运算中仍然适用。
②二次根式的加减乘除混合运算过程中,每个根式可以看作是一个“单项式”,多个不同类的二次根式的和可以看作“多项式”。
③运算结果是根式的,一般应表示为最简二次根式。
二次根式的化简:
先对分子、分母因式分解,能约分的就约分,能开方的就开方,或先对被开方数进行通分,然后再通过分母有理化进行化简。

二次根式混合运算掌握:
1、确定运算顺序。
2、灵活运用运算定律。
3、正确使用乘法公式。
4、大多数分母有理化要及时。
5、在有些简便运算中也许可以约分,不要盲目有理化。
6、字母运算时注意隐含条件和末尾括号的注明。
7、提公因式时可以考虑提带根号的公因式。

二次根式化简方法:
二次根式的化简是初中阶段考试必考的内容,初中竞赛的题目中也常常会考察这一内容。
分母有理化:
分母有理化即将分母从非有理数转化为有理数的过程,以下列出分母有理化的几种方法:
(1)直接利用二次根式的运算法则:
例:
(2)利用平方差公式:
例:
(3)利用因式分解:
例:(此题可运用待定系数法便于分子的分解)

换元法(整体代入法):
换元法即把根式中的某一部分用另一个字母代替的方法,是化简的重要方法之一。
例:在根式中,令,即可得到
原式=√(u2+9-6u)+√(u2+25-10u)=√(u-3)2+√(u-5)2=2u-8=2√(x+2)-8

提公因式法:
例:计算


巧构常值代入法:
例:已知x2-3x+1=0,求的值。
分析:已知形如ax2+bx+c=0(x≠0)的条件,所求式子中含有的项,可先将ax2+bx+c=0化为x+=,即先构造一个常数,再代入求值。
解:显然x≠0,x2-3x+1=0化为x+=3。
原式==2.