返回

初中二年级数学

首页
  • 解答题
    如图所示,点A、C、B、D在同一直线上,AM=CN,BM=DN,AC=DB。问:AM与CN有怎样的位置关系?
    解:AM∥CN
    理由:∵AC=BD
    ∴AB=CD(                 )
    在△ABM与△CDN中
    ∴△ABM≌△CDN(                    )
    ∴∠A=∠1(                    )
    ∴AM∥CN(                    )。

    本题信息:2011年同步题数学解答题难度较难 来源:刘佩
  • 本题答案
    查看答案
本试题 “如图所示,点A、C、B、D在同一直线上,AM=CN,BM=DN,AC=DB。问:AM与CN有怎样的位置关系?解:AM∥CN理由:∵AC=BD∴AB=CD( )在△ABM与△CDN中∴△ABM≌△CDN( )∴...” 主要考查您对

平行线的性质,平行线的公理

全等三角形的性质

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 平行线的性质,平行线的公理
  • 全等三角形的性质

平行公理:过直线外一点有且只有一条直线与已知直线平行。
推论(平行线的传递性):平行同一直线的两直线平行。
∵a∥c,c ∥b
∴a∥b。

平行线的性质:
1. 两条平行被第三条直线所截,同位角相等。
简单说成:两直线平行,同位角相等。
2. 两条平行线被第三条直线所截,内错角相等。
简单说成:两直线平行,内错角相等。
3 . 两条平行线被第三条直线所截,同旁内角互补。
简单说成:两直线平行,同旁内角互补。


平行线的性质公理注意:
①注意条件“经过直线外一点”,若经过直线上一点作已知直线的平行线,就与已知直线重合了;
②平行公理体现了平行线的存在性和唯一性;
③平行公理的推论体现了平行线的传递性。
④在两直线平行的前提下才存在同位角相等、内错角相等、同旁内角互补的结论。这是平行线特有的性质。不要一提同位角或内错角就认为他们相等,一提同旁内角就认为互补,若没有两直线平行的条件,他们是不成立的。

全等三角形:
两个全等的三角形,而该两个三角形的三条边及三个角都对应地相等。全等三角形是几何中全等的一种。根据全等转换,两个全等三角形可以是平移、旋转、轴对称,或重叠等。当两个三角形的对应边及角都完全相对时,该两个三角形就是全等三角形。正常来说,验证两个全等三角形时都以三个相等部分来验证,最后便能得出结果。
全等三角形的对应边相等,对应角相等。
①全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;
②全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角;
③有公共边的,公共边一定是对应边;
④有公共角的,角一定是对应角;
⑤有对顶角的,对顶角一定是对应角。

全等三角形的性质:
1.全等三角形的对应角相等。
2.全等三角形的对应边相等。
3.全等三角形的对应边上的高对应相等。
4.全等三角形的对应角的角平分线相等。
5.全等三角形的对应边上的中线相等。
6.全等三角形面积相等。
7.全等三角形周长相等。
8.全等三角形的对应角的三角函数值相等。