本试题 “把底面直径和高相等的圆柱体侧面展开后是正方形。[ ]” 主要考查您对圆柱,圆锥,球体
等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
圆柱:
以矩形的一边所在直线为旋转轴,其余三边旋转360°形成的面所围成的旋转体叫作圆柱。
圆柱的两个完全相同的圆面叫做底面(又分上底和下底);圆柱有一个曲面,叫做侧面;两个底面的对应点之间的距离叫做高(高有无数条)。
圆锥:
圆锥面和一个截它的平面(满足交线为圆)组成的空间几何图形叫圆锥。
圆锥的高:圆锥的顶点到圆锥的底面圆心之间的距离叫做圆锥的高;
圆锥的母线:圆锥的侧面展开形成的扇形的半径、底面圆周上点到顶点的距离。
圆锥的侧面积:将圆锥的侧面沿母线展开,是一个扇形,这个扇形的弧长等于圆锥底面的周长,而扇形的半径等于圆锥的母线的长。
圆锥的侧面积就是弧长为圆锥底面的周长×母线/2;没展开时是一个曲面。
圆柱和圆锥是由平面和曲面共同围成的立体图形;圆柱有无数条高,圆锥只有一条高。
球体:
空间中到定点的距离小于或等于定长的所有点组成的图形叫做球,如图上图所示的图形为球体。
球体是一个连续曲面的立体图形,由球面围成的几何体称为球体。世界上没有绝对的球体。绝对的球体只存在于理论中。
球的表面是一个曲面,这个曲面就叫做球面。
球和圆类似,也有一个中心叫做球心。
与“把底面直径和高相等的圆柱体侧面展开后是正方形。[ ]”考查相似的试题有: