本试题 “选修4-4:坐标系与参数方程在直角坐标系xoy中,圆C的参数方程为x=-22+rcosθy=-22+rsinθ(θ为参数r>0)以O为极点,x轴的非负半轴为极轴,并取相同的长度单位建...” 主要考查您对简单曲线的极坐标方程
圆的参数方程
等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
曲线的极坐标方程的定义:
一般地,在极坐标系中,如果平面曲线C上任意一点的极坐标中至少有一个满足方程f(ρ,θ)=0,并且坐标适合方程f(ρ,θ)=0的点都在曲线上,那么方程f(ρ,θ)=0叫做曲线C的极坐标方程。
求曲线的极坐标方程的常用方法:
直译法、待定系数法、相关点法等。
圆心为(α,β)(a>0),半径为a的圆的极坐标方程为,此圆过极点O。
直线的极坐标方程:
直线的极坐标方程是ρ=1/(2cosθ+4sinθ)。
圆的极坐标方程:
圆的参数方程:
(θ∈[0,2π)),(a,b)为圆心坐标,r为圆的半径,θ为参数(x,y)为经过点的坐标。
圆心为原点,半径为r的圆的参数方程:
如图,如果点P的坐标为(x,y),圆半径为r, 根据三角函数定义,点P的横坐标x、纵坐标y都是θ的函数,即
与“选修4-4:坐标系与参数方程在直角坐标系xoy中,圆C的参数方程...”考查相似的试题有: