返回

初中二年级数学

首页
  • 填空题
    阅读理解
    对于任意正实数a,b,∵≥0,∴a+b﹣2≥0,∴a+b≥2,只有当a=b时,等号成立.结论:在a+b≥2(a,b均为正实数)中,若ab为定值p,则a+b≥2只有当a=b时,a+b有最小值2.根据上述内容,回答下列问题:若m>0,只有当m=(    )时,m+有最小值(    ).
    本题信息:2012年专项题数学填空题难度一般 来源:任丽华
  • 本题答案
    查看答案
本试题 “阅读理解对于任意正实数a,b,∵≥0,∴a+b﹣2≥0,∴a+b≥2,只有当a=b时,等号成立.结论:在a+b≥2(a,b均为正实数)中,若ab为定值p,则a+b≥2只有当a=b时,a+b...” 主要考查您对

求反比例函数的解析式及反比例函数的应用

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 求反比例函数的解析式及反比例函数的应用

反比例函数解析式的确定方法:
由于在反比例函数关系式 :y= 中,只有一个待定系数k,确定了k的值,也就确定了反比例函数。因此,只需给出一组x、y的对应值或图象上一点的坐标,代入中即可求出k的值,从而确定反比例函数的关系式。但在实际求反比例函数的解析式时,应该具体问题具体分析。

反比例函数的应用:
建立函数模型,解决实际问题。



用待定系数法求反比例函数关系式的一般步骤是:
①设所求的反比例函数为:y= (k≠0);
②根据已知条件(自变量与函数的对应值)列出含k的方程;
③由代人法解待定系数k的值;
④把k值代人函数关系式y= 中。

反比例函数应用一般步骤:
①审题;
②求出反比例函数的关系式;
③求出问题的答案,作答。