绝对值定义:在数轴上,表示一个数的点到原点的距离叫做这个数的绝对值。
绝对值用“||”来表示。
在数轴上,表示一个数a的点到数b的点之间的距离的值,叫做a-b的绝对值,记作|a-b|。
绝对值的意义:1、几何的意义:
在数轴上,一个数到原点的距离叫做该数的绝对值.如:5指在数轴上表示数5的点与原点的距离,这个距离是5,所以5的绝对值是5。
2、代数的意义:
非负数(正数和0,)
非负数的绝对值是它本身,非正数的绝对值是它的相反数。
互为相反数的两个数的绝对值相等。
a的绝对值用“|a |”表示.读作“a的绝对值”。
实数a的绝对值永远是非负数,即|a |≥0。
互为相反数的两个数的绝对值相等,即|-a|=|a|。
若a为正数,则满足|x|=a的x有两个值±a,如|x|=3,,则x=±3.
绝对值的有关性质:
①任何有理数的绝对值都是大于或等于0的数,这是绝对值的非负性;
②绝对值等于0的数只有一个,就是0;
③绝对值等于同一个正数的数有两个,这两个数互为相反数;
④互为相反数的两个数的绝对值相等。
绝对值的化简:
绝对值意思是值一定为正值,按照“符号相同为正,符号相异为负”的原则来去绝对值符号。
①绝对值符号里面为负,在去掉绝对值时必须要加一个负的符号老确保整个值为正值,也就是当:
│a│=a (a为正值,即a≥0 时);│a│=-a (a为负值,即a≤0 时)
②整数就找到这两个数的相同因数;
③小数就把这两个数同时扩大相同倍数成为整数,一般都是扩大10、100倍;
④分数的话就相除,得数是分数就是分子:分母,要是得数是整数,就这个数比1。
有理数的减法:已知两个有理数加数的和与其中的一个加数,求另一个加数的运算,叫做有理数的减法,减法是加法的逆运算。
有理数的减法法则:减去一个数等于加上这个数的相反数,即a-b=a+(-b)。
两变:减法运算变加法运算,减数变成它的相反数。
一不变:被减数不变。可以表示成: a-b=a+(-b)。
计算步骤:(1)把减法变为加法;
(2)按加法法则进行。
有理数减法点拨:
1.引进负数之后,对于任意两个有理数都可以求出其差,不存在“不够减”的问题,并有如下结论:
大数减小数,差为正数;
小数减大数,差为负数;
某数减去零,差为某数;
零减去某数,差为某数的相反数;
相等两数相减,差为零。
2.在减法转化为加法时,减数必须同时变成其相反数,即“同时改变两个符号”。
有理数乘方的定义:求n个相同因数的积的运算叫做乘方,乘方的结果叫做幂。在a
n中,a叫做底数,n叫做指数。
2
2、7
3也可以看做是乘方运算的结果,这时它们表示数,分别读作“2的2次幂”、“7的3次幂”,其中2、7叫做底数,6、3叫做指数。
①习惯上把2
2叫做2的平方,把2
3叫做2的立方;
②当底数是负数或分数时,要先用括号将底数括上,再在其右上角写指数,指数要写得小些。
乘方的性质:
乘方是乘法的特例,其性质如下:
(1)正数的任何次幂都是正数;
(2)负数的偶次幂是正数,负数的奇次幂是负数;
(3)0的任何(除0以外)次幂都是0;
(4)a
2是一个非负数,即a
2≥0。
有理数乘方法则:①负数的奇次幂是负数,负数的偶次幂是正数。例如:(-2)
3=-8,(-2)
2=4
②正数的任何次幂都是正数,0的任何正整数次幂都是0.例如:2
2=4,2
3=8,0
3=0
点拨:①0的次幂没意义;
②任何有理数的偶次幂都是非负数;
③由于乘方是乘法的特例,因此有理数的乘方运算可以用有理数的乘法运算完成;
④负数的乘方与乘方的相反数不同。
乘方示意图: