本试题 “为丰富学生课余生活,引领学生多读书、会读书、读好书,重庆一中聘请了西南师大教授讲授“诗歌赏析”。为激励学生积极参与,凡听课者每人发了一张带号码的入场...” 主要考查您对列举法求概率
条形图
扇形图
等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
可能条件下概率的意义:一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m中结果,那么事件A发生的概率为P(A)=。
等可能条件下概率的特征:
(1)对于每一次试验中所有可能出现的结果都是有限的;
(2)每一个结果出现的可能性相等。
概率的计算方法:
(1)列举法(列表或画树状图),
(2)公式法;
列表法或树状图这两种举例法,都可以帮助我们不重不漏的列出所以可能的结果。
列表法
(1)定义:用列出表格的方法来分析和求解某些事件的概率的方法叫做列表法。
(2)列表法的应用场合
当一次试验要设计两个因素, 并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法。
树状图法
(1)定义:通过列树状图列出某事件的所有可能的结果,求出其概率的方法叫做树状图法。
(2)运用树状图法求概率的条件
当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率。
条形图特点:
(1)能够显示每组中的具体数据;
(2)易于比较数据之间的差别。
描绘条形图的3要素:组数、组宽度、组限。
1.组数
把数据分成几组,指导性的经验是将数据分成5~10组。
2.组宽度
通常来说,每组的宽度是一致的。组数和组宽度的选择就不是独立决定的,一个经验标准是:
近似组宽度=(最大值-最小值)/组数
然后根据四舍五入确定初步的近似组宽度,之后根据数据的状况进行调整。
3.组限
分为组下限(进入该组的最小可能数据)和组上限(进入该组的最大可能数据),并且一个数据只能在一个组限内。
绘画条形图时,不同组之间是有空隙的;而绘画直方图时,不同组之间是没有空隙的。
使用条形图的情况:
轴标签过长;
显示的数值是持续型的。
条形图具有下列图表子类型:
簇状条形图和三维簇状条形图 簇状条形图比较各个类别的值。在簇状条形图中,通常沿垂直轴组织类别,而沿水平轴组织数值。三维簇状条形图以三维格式显示水平矩形,而不以三维格式显示数据。
堆积条形图和三维堆积条形图 堆积条形图显示单个项目与整体之间的关系。三维堆积条形图以三维格式显示水平矩形,而不以三维格式显示数据。
百分比堆积条形图和三维百分比堆积条形图 此类型的图表比较各个类别的每一数值所占总数值的百分比大小。三维百分比堆积条形图表以三维格式显示水平矩形,而不以三维格式显示数据。
水平圆柱图、圆锥图和棱锥图 水平圆柱图、圆锥图和棱锥图可以使用为矩形条形图提供的簇状图、堆积图和百分比堆积图,并且它们以完全相同的方式显示和比较数据。唯一的区别是这些图表类型显示圆柱、圆锥和棱锥形状而不是水平矩形。
与“为丰富学生课余生活,引领学生多读书、会读书、读好书,重庆...”考查相似的试题有: