用字母表示数:含有字母的式子不仅可以表示数量关系,也可以表示数量。还可以简明、概括地表达运算定律和计算公式,方便研究和解决实际问题。
①含有字母的式子中,数字和字母、字母和字母相乘时,乘号可以记作“·”,也可以省略不写。
②在省略乘号的时候,应当把数字写在字母的前面。
③当“1”和任何字母相乘时,“1”可以省略不写。
④由于字母可以表示任何数,在一些式中,对字母表示数的要运行说明,如:
(a≠0)。
⑤因为字母表示的是数,所以在式子中每一个字母都不注明单位名称,计算结果也不注明单位名称,只在答句中写上单位名称。
用字母表示数的意义:有助于揭示概念的本质特征,能使数量之间的关系更加简明,更具有普遍意义。使思维过程简约化,易于形成概念系统。
解方程:
使方程左右两边相等的未知数的值叫做方程的解。
求方程的解的过程叫做解方程。
方程的解是一个值,解方程是求方程的解的演算过程。
检验方法:
求出未知数的值分别代入原方程的两边计算(即含有字母的式子的值),如果原方程等号左右两边相等,则所求得的未知数的值是原方程的解。
解方程依据:
方程依靠等式各部分的关系,和加减乘除各部分的关系:
加数+加数=和,和-其中一个加数=另一个加数,差+减数=被减数,
被减数-减数=差,被减数-差=减数,
因数×因数=积,积÷一个因数=另一个因数,
被除数÷除数=商,被除数÷商=除数,商×除数=被除数。