返回

初中三年级数学

首页
  • 单选题
    已知点A、点B在x轴上,分别以A、B为圆心的两圆相交于M(a,5),N(9,6),则a+b的值为
    [     ]

    A.14
    B.-14
    C.-4
    D.4
    本题信息:2011年专项题数学单选题难度一般 来源:刘佩
  • 本题答案
    查看答案
本试题 “已知点A、点B在x轴上,分别以A、B为圆心的两圆相交于M(a,5),N(9,6),则a+b的值为[ ]A.14B.-14C.-4D.4” 主要考查您对

用坐标表示轴对称

圆和圆的位置关系(圆和圆的相离,圆与圆的相交,圆与圆的相切)

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 用坐标表示轴对称
  • 圆和圆的位置关系(圆和圆的相离,圆与圆的相交,圆与圆的相切)

用坐标表示轴对称:
关于x轴对称的点的坐标的特点是:横坐标不变,纵坐标互为相反数;
关于y轴对称的点的坐标的特点是:横坐标互为相反数,纵坐标不变。

点(x, y)关于x轴对称的点的坐标为x,-y ,
点(x, y)关于y轴对称的点的坐标为-x,y

例如图中:
点A(2,3)关于x轴对称的点的坐标为A,,(-2,3);
点A(2,3)关于x轴对称的点的坐标为A,(2,3)。


点拨:
①写出平面坐标系中一个点关于x轴和y轴对称的点的坐标:
关于x轴对称的点横坐标相等,纵坐标互为相反数;关于y轴对称的点横坐标互为相反数,纵坐标相等。
②画出一个图形关于x轴或y轴对称:
先求出已知图形中的一些特殊点(如多边形的顶点)的对应点的坐标,描出并连接这些点,就可以得到这个图形的轴对称图形。
圆和圆的位置关系:
如果两个圆没有公共点,那么就说这两个圆相离,相离分为外离和内含两种。
如果两个圆只有一个公共点,那么就说这两个圆相切,相切分为外切和内切两种。
如果两个圆有两个公共点,那么就说这两个圆相交。

圆心距:两圆圆心的距离叫做两圆的圆心距。

圆和圆位置关系的性质与判定:
设两圆的半径分别为R和r,圆心距为d,那么
两圆外离d>R+r(没有交点)
两圆外切d=R+r (有一个交点,叫切点)
两圆相交R-r<d<R+r(R≥r)(有两个交点)
两圆内切d=R-r(R>r) (有一个交点,叫切点)
两圆内含d<R-r(R>r)(没有交点)

两圆相切的性质:
(1)连心线:两圆圆心的连线。
(2)两圆相切的性质:相切两圆的连心线必过切点,即两圆圆心、切点三点在一条直线上。


发现相似题
与“已知点A、点B在x轴上,分别以A、B为圆心的两圆相交于M(a,5...”考查相似的试题有: