返回

高中数学

首页
  • 解答题
    已知0<α<
    π
    4
    ,β为f(x)=cos(2x+
    π
    8
    )的最小正周期,
    a
    =(tan(a+
    1
    4
    β
    ),-1),
    b
    =(cosα,2),且
    a•b
    =m,求
    2cos2α+sin2(α+β)
    cosα-sinα

    本题信息:2007年安徽数学解答题难度较难 来源:未知
  • 本题答案
    查看答案
本试题 “已知0<α<π4,β为f(x)=cos(2x+π8)的最小正周期,a=(tan(a+14β),-1),b=(cosα,2),且a•b=m,求2cos2α+sin2(α+β)cosα-sinα.” 主要考查您对

两角和与差的三角函数及三角恒等变换

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 两角和与差的三角函数及三角恒等变换

两角和与差的公式:






倍角公式:



半角公式:


万能公式:

三角函数的积化和差与和差化积:








三角恒等变换:

寻找式子所包含的各个角之间的联系,并以此为依据选择可以联系它们的适当公式,这是三角恒等变换的特点。


三角函数式化简要遵循的"三看"原则:

(1)一看"角".这是最重要的一点,通过角之间的关系,把角进行合理拆分与拼凑,从而正确使用公式.
(2)二看"函数名称".看函数名称之间的差异,从而确定使用的公式.
(3)三看"结构特征".分析结构特征,可以帮助我们找到变形得方向,常见的有"遇到分式要通分"等.

方法提炼:

(1)解决给值求值问题的一般思路:
①先化简需求值得式子;②观察已知条件与所求值的式子之间的联系(从三角函数名及角入手);③将已知条件代入所求式子,化简求值.
(2)解决给值求角问题的一般步骤:
①求出角的某一个三角函数值;②确定角的范围;③根据角的范围确定所求的角.