返回

高中数学

首页
  • 解答题
    已知向量
    m
    =(cosx,-sinx),
    n
    =(cosx,sinx-2
    3
    cosx),x∈R
    ,令f(x)=
    m
    n

    (Ⅰ)求函数f(x)的单调递增区间;
    (Ⅱ)当x∈(0,
    π
    2
    ]
    时,求函数f(x)的值域.
    本题信息:数学解答题难度较难 来源:未知
  • 本题答案
    查看答案
本试题 “已知向量m=(cosx,-sinx),n=(cosx,sinx-23cosx),x∈R,令f(x)=m•n,(Ⅰ)求函数f(x)的单调递增区间;(Ⅱ)当x∈(0,π2]时,求函数f(x)的值域.” 主要考查您对

正弦、余弦函数的图象与性质(定义域、值域、单调性、奇偶性等)

向量数量积的含义及几何意义

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 正弦、余弦函数的图象与性质(定义域、值域、单调性、奇偶性等)
  • 向量数量积的含义及几何意义

正弦函数和余弦函数的图象:正弦函数y=sinx(x∈R)和余弦函数y=cosx(x∈R)的图象分别叫做正弦曲线和余弦曲线,

1.正弦函数

2.余弦函数

函数图像的性质
正弦、余弦函数图象的性质:

由上表知,正弦与余弦函数的定义域都是R,值域都是[-1,1],对y=sinx,当时,y取最大值1,
时,y取最小值-1;对y=cosx,当x=2kπ(k∈Z)时,y取最大值1,当x=2kπ+π(k∈Z)时,y取最小值-1。




正弦、余弦函数图象的性质:


由上表知,正弦与余弦函数的定义域都是R,值域都是[-1,1],对y=sinx,当时,y取最大值1,
时,y取最小值-1;对y=cosx,当x=2kπ(k∈Z)时,y取最大值1,当x=2kπ+π(k∈Z)时,y取最小值-1。


两个向量的夹角的定义:

对于非零向量,作称为向量的夹角,当=0时,同向,当=π时,反向,
时,垂直。

两个向量数量积的含义:

如果两个非零向量,它们的夹角为,我们把数量叫做的数量积(或内积或点积),记作:,即
上的投影。
规定:零向量与任一向量的数量积是0,注意数量积是一个实数,不再是一个向量。

两个向量数量积的几何意义

数量积等于的模上的投影的乘积。


向量数量积的性质:

设两个非零向量
(1)
(2)
(3)
(4)
(5)当同向时,;当反向时,;当为锐角时,为正且不同向,;当为钝角时,为负且不反向,