本试题 “已知向量m=(cosx,-sinx),n=(cosx,sinx-23cosx),x∈R,令f(x)=m•n,(Ⅰ)求函数f(x)的单调递增区间;(Ⅱ)当x∈(0,π2]时,求函数f(x)的值域.” 主要考查您对正弦、余弦函数的图象与性质(定义域、值域、单调性、奇偶性等)
向量数量积的含义及几何意义
等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
正弦函数和余弦函数的图象:正弦函数y=sinx(x∈R)和余弦函数y=cosx(x∈R)的图象分别叫做正弦曲线和余弦曲线,
1.正弦函数
2.余弦函数
函数图像的性质
正弦、余弦函数图象的性质:
由上表知,正弦与余弦函数的定义域都是R,值域都是[-1,1],对y=sinx,当时,y取最大值1,
当时,y取最小值-1;对y=cosx,当x=2kπ(k∈Z)时,y取最大值1,当x=2kπ+π(k∈Z)时,y取最小值-1。
正弦、余弦函数图象的性质:
由上表知,正弦与余弦函数的定义域都是R,值域都是[-1,1],对y=sinx,当时,y取最大值1,
当时,y取最小值-1;对y=cosx,当x=2kπ(k∈Z)时,y取最大值1,当x=2kπ+π(k∈Z)时,y取最小值-1。
两个向量的夹角的定义:
对于非零向量,,作称为向量,的夹角,当=0时,,同向,当=π时,,反向,
当时,垂直。
两个向量数量积的含义:
如果两个非零向量,,它们的夹角为,我们把数量叫做与的数量积(或内积或点积),记作:,即。
叫在上的投影。
规定:零向量与任一向量的数量积是0,注意数量积是一个实数,不再是一个向量。
两个向量数量积的几何意义:
数量积等于的模与在上的投影的乘积。
向量数量积的性质:
设两个非零向量
(1);
(2);
(3);
(4);
(5)当,同向时,;当与反向时,;当为锐角时,为正且,不同向,;当为钝角时,为负且,不反向,。
与“已知向量m=(cosx,-sinx),n=(cosx,sinx-23cosx),x∈R,令f...”考查相似的试题有: