返回

高中三年级数学

首页
  • 解答题
    (本题满分15分)已知椭圆的离心率为,椭圆上任意一点到右焦点的距离的最大值为
    (I)求椭圆的方程;
    (II)已知点线段上一个动点(为坐标原点),是否存在过点且与轴不垂直的直线与椭圆交于两点,使得,并说明理由。

    本题信息:数学解答题难度一般 来源:未知
  • 本题答案
    查看答案
本试题 “(本题满分15分)已知椭圆的离心率为,椭圆上任意一点到右焦点的距离的最大值为。(I)求椭圆的方程;(II)已知点是线段上一个动点(为坐标原点),是否存在...” 主要考查您对

椭圆的定义

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 椭圆的定义

椭圆的第一定义:

平面内与两个定点为F1,F2的距离的和等于常数(大于)的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。特别地,当常数等于时,轨迹是线段F1F2,当常数小于时,无轨迹。

椭圆的第二定义:

平面内到定点F的距离和到定直线l的距离之比等于常数e(0<e<1)的点的轨迹,叫做椭圆,定点F叫椭圆的焦点,定直线l叫做椭圆的准线,e叫椭圆的离心率。


椭圆的定义应该包含几个要素:

 
利用椭圆的定义解题:
 
当题目中出现一点在椭圆上的条件时,注意使用定义