本试题 “已知向量,,函数, 三个内角的对边分别为.(1)求的单调递增区间;(2)若,求的面积.” 主要考查您对正弦定理
等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
正弦定理:
在一个三角形中,各边和它所对角的正弦的比相等,即=2R。
有以下一些变式:
(1);
(2);
(3)。
正弦定理在解三角形中的应用:
(1)已知两角和一边解三角形,只有一解。
(2)已知两边和其中一边的对角,解三角形,要注意对解的个数的讨论。可按如下步骤和方法进行:先看已知角的性质和已知两边的大小关系。
如已知a,b,A,
(一)若A为钝角或直角,当b≥a时,则无解;当a≥b时,有只有一个解;
(二)若A为锐角,结合下图理解。
①若a≥b或a=bsinA,则只有一个解。
②若bsinA<a<b,则有两解。
③若a<bsinA,则无解。
也可根据a,b的关系及与1的大小关系来确定。
与“已知向量,,函数, 三个内角的对边分别为.(1)求的单调递增...”考查相似的试题有: