返回

高中二年级数学

首页
  • 解答题
    过点Q(-2,)作圆C:x2+y2=r2(r>0)的切线,切点为D,且QD=4,
    (1)求r的值;
    (2)设P是圆C上位于第一象限内的任意一点,过点P作圆C的切线l,且l交x轴于点A,交y 轴于点B,设,求的最小值(O为坐标原点)。
    本题信息:2010年0101月考题数学解答题难度较难 来源:张玲玲
  • 本题答案
    查看答案
本试题 “过点Q(-2,)作圆C:x2+y2=r2(r>0)的切线,切点为D,且QD=4,(1)求r的值;(2)设P是圆C上位于第一象限内的任意一点,过点P作圆C的切线l,且l交x轴于点...” 主要考查您对

基本不等式及其应用

圆的标准方程与一般方程

圆的切线方程

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 基本不等式及其应用
  • 圆的标准方程与一般方程
  • 圆的切线方程

基本不等式:

(当且仅当a=b时取“=”号);
变式:①(当且仅当a=b时取“=”号),即两个正数的算术平均不小于它们的几何平均。
;③;④


对基本不等式的理解:

(1)基本不等式的证明是利用重要不等式推导的,即,即有
(2)基本不等式又称为均值定理、均值不等式等,其中的算术平均数,的几何平均数,本定理也可叙述为:两个正数的算术平均数不小于它们的几何平均数.
(3)要特别注意不等式成立的条件和等号成立的条件.均值不等式中:①当a=b时取等号,即


对于两个正数x,y,若已知xy,x+y,中的某一个为定值,可求出其余各个的最值:
如:(1)当xy=P(定值),那么当x=y时,和x+y有最小值2
(2)x+y=S(定值),那么当x=y时,积xy有最大值
(3)已知x2+y2=p,则x+y有最大值为

应用基本的不等式解题时:

注意创设一个应用基本不等式的情境及使等号成立的条件,即“一正、二定、三相等”。

利用基本不等式比较实数大小:

(1)注意均值不等式的前提条件.
(2)通过加减项的方法配凑成使用均值定理的形式.
(3)注意“1”的代换.
(4)灵活变换基本不等式的形式,并注重其变形形式的运用.重要不等式的形式可以是,也可以是,还可以是等,不仅要掌握原来的形式,还要掌握它的几种变形形式以及公式的逆用等,以便应用.
(5)合理配组,反复应用均值不等式。 


基本不等式的几种变形公式:
 
 

圆的定义:

平面内与一定点的距离等于定长的点的集合是圆。定点就是圆心,定长就是半径。

圆的标准方程:

圆的标准方程,圆心(a,b),半径为r;特别当圆心是(0,0),半径为r时,圆的标准方程为

圆的一般方程:

圆的一般方程
>0时,表示圆心在,半径为的圆;
=0时,表示点
<0时,不表示任何图形。


圆的定义的理解:

(1)定位条件:圆心;定形条件:半径。
(2)当圆心位置与半径大小确定后,圆就唯一确定了.因此一个圆最基本的要素是圆心和半径.

圆的方程的理解:

(1)圆的标准方程中含有a,b,r三个独立的系数,因此,确定一个圆需三个独立的条件.其中圆心是圆的定位条件,半径是圆的定形条件.
(2)圆的标准方程的优点在于明确显示了圆心和半径.
(3)圆的一般方程形式的特点:
a.的系数相同且不等于零;
b.不含xy项.
(4)形如的方程表示圆的条件:
a.A=C≠0;
b.B=0;
c.


几种特殊位置的圆的方程:

条件 标准方程 一般方程
圆心在原点
过原点
圆心在x轴上
圆心在y轴上
与x轴相切
与y轴相切
与x,y轴都相切
圆心在x轴上且过原点
圆心在y轴上且过原点

圆的切线方程:

1、已知圆
(1)若已知切点在圆上,则切线只有一条,其方程是
(2)当圆外时,表示过两个切点的切点弦方程。
(3)过圆外一点的切线方程可设为,再利用相切条件求k,这时必有两条切线。
(4)斜率为k的切线方程可设为y=kx+b,再利用相切条件求b,必有两条切线。
2、已知圆
(1)过圆上的点的切线方程为
(2)斜率为k的圆的切线方程为


圆的切线方程的求法:

①代数法:设出切线方程,利用切线与圆仅有一个交点,将直线方程代入圆的方程,从而△=0,可求解;
②几何法利用几何特征:圆心到切线的距离等于圆的半径,可求解.

过定点的圆的切线方程:

①过圆上一点的切线方程:
与圆的切线方程是
与圆的切线方程是
与圆的切线方程是
与圆的切线方程是

②过圆外一点的切线方程:设外一点,求过P0点的圆的切线.
方法l:设切点是,解方程组

求出切点P1的坐标,即可写出切线方程。
方法2:设切线方程是 ,再由 求出待定系数k,就可写出切线方程.
特别提醒:一般说来,方法2比较简便,但应注意,可能遗漏k不存在的切线.因此,当解出的k值唯一时,应观察图形,看是否有垂直于x轴的切线.