返回

高中数学

首页
  • 解答题
    (文)已知右焦点为F的双曲线
    x2
    a2
    -
    y2
    b2
    =1(a>0,b>0)
    的离心率e=
    2
    3
    3
    ,其右准线与经过第一象限的渐近线交于点P,且P的纵坐标为
    3
    2

    (Ⅰ)求双曲线的方程;
    (Ⅱ)求直线PF被抛物线y2=8x截得的线段长.
    本题信息:数学解答题难度一般 来源:未知
  • 本题答案
    查看答案
本试题 “(文)已知右焦点为F的双曲线x2a2-y2b2=1(a>0,b>0)的离心率e=233,其右准线与经过第一象限的渐近线交于点P,且P的纵坐标为32.(Ⅰ)求双曲线的方程;(Ⅱ)...” 主要考查您对

双曲线的标准方程及图象

双曲线的性质(顶点、范围、对称性、离心率)

抛物线的性质(顶点、范围、对称性、离心率)

圆锥曲线综合

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 双曲线的标准方程及图象
  • 双曲线的性质(顶点、范围、对称性、离心率)
  • 抛物线的性质(顶点、范围、对称性、离心率)
  • 圆锥曲线综合

双曲线的标准方程:

(1)中心在原点,焦点在x轴上:
(2)中心在原点,焦点在y轴上:
双曲线的图像:

(1)焦点在x轴上的双曲线的图像

(2)焦点在y轴上的双曲线的图像


判断双曲线的焦点在哪个轴上:

判断双曲线的焦点在哪个轴上的方法看未知数前的系数,哪一个为正,焦点就在哪一个轴上.

定义法求双曲线的标准方程:

求动点的轨迹方程时,可利用定义先判断动点的轨迹,再写出方程.平面几何中的定理性质在解决解析几何问题时起着简化运算的作用,一定要注意应用,根据双曲线的定义,到两个定点的距离之差的绝对值是一个常数的点的轨迹是双曲线,可以求双曲线的标准方程,

待定系数法求双曲线的标准方程:

在求双曲线标准方程时,可先设出其标准方程,再根据双曲线的参数a,b,c,e的取值及相互之间的关系,求出a,b的值,已知双曲线的渐近线方程,求双曲线方程时,可利用共渐近线双曲线系方程,再由其他条件求λ.若焦点不确定时,要注意分类讨论.

利用双曲线的性质求解有关问题:

要解决双曲线中有关求离心率或求离心率范围的问题,应找好题中的等量关系或不等关系,构造出离心率的关系式,这里应和椭圆中a,b,c的关系区分好,即


几种特殊的双曲线:

等轴双曲线 实轴和虚轴相等的双曲线叫做等轴双曲线.离心率两条渐近线互相垂直
共轭双曲线
共渐近线的双曲线

双曲线的离心率的定义:

(1)定义:双曲线的焦距与实轴长的比叫做双曲线的离心率.
(2)e的范围:e>l.
(3)e的含义:e是表示双曲线开口大小的一个量,e越大开口越大.

渐近线与实轴的夹角也增大。


双曲线的性质:

1、焦点在x轴上:顶点:(a,0),(-a,0);焦点:(c,0),(-c,0);
渐近线方程:
2、焦点在y轴上:顶点:(0,-a),(0,a);焦点:(0,c),(0,-c);
渐近线方程:
3、轴:x、y为对称轴,实轴长为2a,虚轴长为2b,焦距2c。
4、离心率
5、中,取值范围:x≤-a或x≥a,y∈R,对称轴是坐标轴,对称中心是原点。


双曲线的焦半径:

双曲线上的点之间的线段长度称作焦半径,分别记作


 
 
 
关于双曲线的几个重要结论:
 
(1)弦长公式(与椭圆弦长公式相同).
(2)焦点三角形:已知的两个焦点,P为双曲线上一点(异于顶点),
的面积为
在解决与焦点三角形有关的问题时,应注意双曲线的两个定义、焦半径公式以及三角形的边角关系、正弦定理等知识的综合运用,还应注意灵活地运用平面几何、三角函数等知识来分析解决问题.
(3)基础三角形:如图所示,△AOB中,
 
(4)双曲线的一个焦点到一条渐近线的距离等于虚半轴长.
(5)自双曲线的焦点作渐近线的垂线,垂足必在相应的准线上,即过焦点所作的渐近线的垂线,渐近线及相应准线三线共点.
(6)以双曲线的焦半径为直径的圆与以实轴为直径的圆外切或内切.
(7)双曲线上一点P(x0,y0)处的切线方程是
(8)双曲线划分平面区域:对于双曲线,我们有:P(x0,y0)在双曲线内部(与焦点共区域) P(x0,y0)在双曲线外部(与焦点不其区域) 


抛物线的性质(见下表):

抛物线的焦点弦的性质:

 
 
 
 
 
 
 

关于抛物线的几个重要结论:

(1)弦长公式同椭圆.
(2)对于抛物线y2=2px(p>0),我们有P(x0,y0)在抛物线内部P(x0,y0)在抛物线外部 
(3)抛物线y2=2px上的点P(x1,y1)的切线方程是抛物线y2=2px(p>0)的斜率为k的切线方程是y=kx+
(4)抛物线y2=2px外一点P(x0,y0)的切点弦方程是
(5)过抛物线y2=2px上两点 的两条切线交于点M(x0,y0),则
(6)自抛物线外一点P作两条切线,切点为A,B,若焦点为F, 又若切线PA⊥PB,则AB必过抛物线焦点F.

利用抛物线的几何性质解题的方法:

根据抛物线定义得出抛物线一个非常重要的几何性质:抛物线上的点到焦点的距离等于到准线的距离.利用抛物线的几何性质,可以进行求值、图形的判断及有关证明.

抛物线中定点问题的解决方法:

在高考中一般以填空题或选择题的形式考查抛物线的定义、标准方程以及几何性质等基础知识,在解答题中常常将解析几何中的方法、技巧与思想集于一身,与其他圆锥曲线或其他章节的内容相结合,考查综合分析问题的能力,而与抛物线有关的定值及最值问题是一个很好的切人点,充分利用点在抛物线上及抛物线方程的特点是解决此类题型的关键,在求最值时经常运用基本不等式、判别式以及转化为函数最值等方法。

利用焦点弦求值:

利用抛物线及焦半径的定义,结合焦点弦的表示,进行有关的计算或求值。

抛物线中的几何证明方法:
 
利用抛物线的定义及几何性质、焦点弦等进行有关的几何证明是抛物线中的一种常见题型,证明时注意利用好图形,并做好转化代换。

圆锥曲线的综合问题:

1、圆锥曲线的范围问题有两种常用方法:
(1)寻找合理的不等式,常见有△>0和弦的中点在曲线内部;
(2)所求量可表示为另一变量的函数,求函数的值域。
2、圆锥曲线的最值、定值及过定点等难点问题。


直线与圆锥曲线的位置关系:

(1)从几何角度来看,直线和圆锥曲线有三种位置关系:相离、相切和相交,相离是直线和圆锥曲线没有公共点,相切是直线和圆锥曲线有唯一公共点,相交是直线与圆锥曲线有两个不同的公共点,并特别注意直线与双曲线、抛物线有唯一公共点时,并不一定是相切,如直线与双曲线的渐近线平行时,与双曲线有唯一公共点,但这时直线与双曲线相交;直线平行(重合)于抛物线的对称轴时,与抛物线有唯一公共点,但这时直线与抛物线相交,故直线与双曲线、抛物线有唯一公共点时可能是相切,也可能是相交,直线与这两种曲线相交,可能有两个交点,也可能有一个交点,从而不要以公共点的个数来判断直线与曲线的位置关系,但由位置关系可以确定公共点的个数.
(2)从代数角度来看,可以根据直线方程和圆锥曲线方程组成的方程组解的个数确定位置关系.设直线l的方程与圆锥曲线方程联立得到ax2+bx+c=0.
①若a=0,当圆锥曲线是双曲线时,直线l与双曲线的渐近线平行或重合;当圆锥曲线是抛物线时,直线l与抛物线的对称轴平行或重合.
②若
当Δ>0时,直线和圆锥曲线相交于不同两点,相交.
当Δ=0时,直线和圆锥曲线相切于一点,相切.
当Δ<0时,直线和圆锥曲线没有公共点,相离.

直线与圆锥曲线相交的弦长公式:

若直线l与圆锥曲线F(x,y)=0相交于A,B两点,求弦AB的长可用下列两种方法:
(1)求交点法:把直线的方程与圆锥曲线的方程联立,解得点A,B的坐标,然后用两点间距离公式,便得到弦AB的长,一般来说,这种方法较为麻烦.
(2)韦达定理法:
不求交点坐标,可用韦达定理求解.若直线l的方程用y=kx+m或x=n表示.